
Reliable Benchmarking with Limbo on Inferno

John Bates
Vita Nuova Limited

3rd March 1999
Revised 20th February 2000

ABSTRACT

Our goal was to identify a mechanism for performing accurate, reliable and real-
istic benchmarking measurements with Limbo on Inferno. The measurements
would need to be accurate in the sense that we could be confident that they were
sufficiently close to the real time taken to perform the measured operation. We
would consider a measurement to be reliable if it could be obtained repeatedly
when carried out under the same conditions at a later date. Additionally, a mea-
surement is only useful if it can be claimed to be related to the expected perfor-
mance of a real applicable operation, we would call such a measurement realistic.
The emphasis in this document is on achieving a reliable measurement.

Expectation

We would like to be able to make measurements with code like:

s := Sample.new(NREP);
for(i:=0; i<NREP; i++) {

t = tstamp();
sys->sleep(0);
t = tstamp() - t;
s.add(t-base);

}

Where s is an object that can be used to record up to NREPmeasurements and base is our prede-
termined estimate of the cost of actually making the measurement. The Limbo function
tstamp() uses devbench to obtain a microsecond timestamp. Such a measurement would give us
an idea of the cost of making a sys->sleep(0) call and by examining a sample of such mea-
surements we could reason about the true cost of the call. In particular, we would get a feel for
just how reliable our estimate of the true cost was.

The first task was to determine a suitable value to use for base by measuring how long it took to
do nothing .

s := Sample.new(NREP);
for(i:=0; i<NREP; i++) {

t = tstamp();
t = tstamp() - t;
s.add(t-base);

}
(n, mean, min, max, std) := s.stat();
base = min;

By repeating the measurement a large number of times and then by choosing the minimum mea-
surement we could hope to choose a sensible value for base. Our confidence in the chosen value

 This benchmark is called BASEin the devbench benchmark suite.

- 2 -

0 500 1000

0

2000

4000

6000

8000

BASE

Observation

Time(us)

Figure 1. Showing the unexpected variation in the BASE results.

and in the results of subsequent benchmarking would be greatest if the distribution of measure-
ments was narrow with most of the values close to the minimum.

Initial Results

We ran the initial tests on a 150MHz Pentium PC with a standard Inferno 2.0 native kernel and
later with an Inferno 2.3 native kernel. The commands

bench -o >x
bgrep BASE x | plot

run the benchmark suite leaving the observations in a file called x and then extract the line con-
taining the results for the test called BASE and plot them to a Wm window under Inferno . The
command bgrep is used in place of grep because the Inferno grep uses sys->print to output
lines and so inherits a very small upper bound on line length. The -o option to bench delivers
the individual observations rather than summary statistics. The BASE test repeats the above
empty loop 1000 times. Plotting the observations in the order in which they were observed gives
the surprising result shown in Figure 1. The majority of values appear to be small, but the graph
is dominated by the relatively small number of very large irregular observations which lie at
around 6 milliseconds to 8 milliseconds and a clearly discernible second set of values which look
to form a more regular pattern at about the 1 millisecond level. The smaller set of values can be
seen more clearly by removing the large values and rescaling the graph. The -o option to Plot
invokes a crude scheme to remove a layer of outliers. It does this by calculating the sample mean
and standard deviation and removing values which lie more than two standard deviations away
from the mean. The process is repeated for each occurrence of the -o option to plot. Thus

plot -ooo

will remove three layers of outliers and then plot the remaining values.

Running

bgrep BASE x | plot -o

gives the output shown in figure 2.

 Actually, to generate the graphs in this document I used plot -gwhich produces grap(1) output.

- 3 -

0 500 1000

0

500

1000

BASE

Observation

Time(us)

Figure 2. Great variability in the BASE results, even with the large outliers removed.

0 2000 4000 6000 8000

0

200

400

600

BASE

Time (us)

Frequency

Figure 3. Histogram showing the distribution of results from the BASE benchmark.

Again, a large number of small values (less than 500 microseconds) and a smaller number of
larger values lying at around about the 1 millisecond level. Running the commands

bgrep BASE x | plot -p 1h
bgrep BASE x | plot -p 1h -o -z

gives a histogram showing the distribution of the results. Firstly, with all the values and then
with one level of outliers removed . In Figure 3 we can see a small set of values up above the 7
millisecond level and then a slightly more focused set at around about 1 millisecond but together
these groups make up much less than 10% of the total values. By removing a level of outliers we

 The -z option to plot forces a zero origin to be part of the plot.

- 4 -

0 500 1000

0

100

200

300

BASE

Time (us)

Frequency

Figure 4. Histogram showing the distribution of results from the BASE benchmark with the large outliers
removed.

can see the distribution of the lower values more clearly, as shown in Figure 4. Even this lower
cluster ranges from about 220 microseconds up to about 500 microseconds.

We can conclude from these initial results that it is not going to be possible to use this mechanism
to perform accurate or reliable benchmarking unless its performance can be improved.

The Measurement Process

At this stage we’re not actually measuring anything real, but looking to obtain some confidence
in our measurements. We have started by observing times to complete the measurement of noth-
ing. We do this by writing a Limbo program (bench.b) which contains the following code:

t0, t1, base: big;
NREP: con 1000;

s := Sample.new(NREP);
treset();
for(i:=0; i<NREP; i++) {

t0 = tstamp();
t1 = tstamp();
s.add(t1-t0);

}
(nil, nil, base, nil, nil) = s.stat();

iob.puts("BASE:1l:Observation::Time:us ");
s.obs(iob);
iob.puts("\n");
iob.flush();

The middle section of code performs the benchmark by taking two consecutive timestamps and
noting the difference between them. This is repeated 1000 times and the observations accumu-
lated in the sample variable s. The function s.stat() returns a tuple containing count, mean,
minimum, maximum and standard deviation for the accumulated values. We assign the mini-
mum value to our variable base. The function treset() arranges for the timestamp code to
start returning small values and so reduces the likelihood of overflow or signing related issues.

- 5 -

The last section of code outputs one line containing the individual observations separated by
spaces and with a suitably formatted initial word which labels the line so that plot can make a
useful interpretation of the results.

The functions treset() and tstamp() make use of files served by devbench and look like this:

tsfd: ref Sys->FD;
treset()
{

tsfd = sys->open("/dev/busec", sys->OWRITE);
if(tsfd == nil)

return;
buf := array[1] of byte;
n := sys->write(tsfd, buf, len buf);
tsfd = sys->open("/dev/busec", sys->OREAD);

}
tstamp(): big
{

buf := array[128] of byte;
n := sys->read(tsfd, buf, len buf);
if(n < 0)

return big 0;

return big string buf[0:n];
}

Devbench must have been previously bound into the namespace

bind -b ’#x’ /dev

so that the files

/dev/bctl
/dev/bdata
/dev/busec

are available. A microsecond timestamp is provided by reading from /dev/busec and is reset
to zero each time anthing is written to it. The function treset() resets the timestamp by writ-
ing to the file and then opens it for reading. The function tstamp() reads the timestamp from
the file and converts it into a big value for use in the program. The device driver ignores the off-
set when reading from the file so that it is not necessary to seek to the beginning of the file
before each read. The important part of the benchmark consists of two consecutive calls to
tstamp(). We need to identify where time is being spent; either in the calls to tstamp() or
else inside the function itself.

Costing

The devbench suite of programs includes one for timing individual lines of Limbo code and break-
ing down the time spent on each line into times for each of the Dis operations invoked by that
line; the program is called cost. To find out how long each part of the benchmark timing loop
takes we can invoke

cost -f bench.b -s bench

Which results in the following output - edited to just show the timing loop and the function
tstamp() . The first line is the output from bench giving the mean, minimum, maximum and
standard deviation of microsecond times for 1000 repetitions of the loop. We see a minimum of
402 microseconds and a maximum of just over 9 milliseconds. The remaining lines are the output
of cost; those beginning with a dash are Dis operation times for the preceding Limbo source code
line. Dis operation lines contain an operation name, an execution count and the mean, minimum,
maximum and standard deviation of execution times.

- 6 -

BASE:summary:Sample:n:Time:us 1000 486 402 9053 499

-- bench.b
...

treset();
- frame 1 2.13 us 2.13 us 2.13 us 0 ns
- call 1 807 ns 807 ns 807 ns 0 ns

s := Sample.new(NREP*10);
- mframe 1 4.85 us 4.85 us 4.85 us 0 ns
- movw 1 2.27 us 2.27 us 2.27 us 0 ns
- lea 1 1.57 us 1.57 us 1.57 us 0 ns
- mcall 1 2.71 us 2.71 us 2.71 us 0 ns

for(i:=0; i<NREP*10; i++) {
- movw 1 1.99 us 1.99 us 1.99 us 0 ns
- blew 1001 1.60 us 1.51 us 34.04 us 1.03 us

t0 = tstamp();
- frame 1000 2.43 us 2.29 us 3.40 us 133 ns
- lea 1000 1.00 us 953 ns 27.74 us 847 ns
- call 1000 1.45 us 1.29 us 2.24 us 153 ns

t1 = tstamp();
- frame 1000 3.45 us 3.01 us 5.57 us 293 ns
- lea 1000 1.22 us 1.02 us 1.61 us 173 ns
- call 1000 1.44 us 1.29 us 1.75 us 140 ns

s.add(t1-t0);
- mframe 1000 3.65 us 3.37 us 24.73 us 700 ns
- movp 1000 1.99 us 1.48 us 2.96 us 267 ns
- subl 1000 2.43 us 2.23 us 4.80 us 173 ns
- mcall 1000 2.11 us 1.95 us 2.51 us 120 ns
- addw 1000 1.62 us 1.48 us 2.50 us 127 ns
- jmp 1000 1.50 us 1.37 us 1.81 us 120 ns

}
(nil, nil, base, nil, nil) = s.stat();

- mframe 1 2.66 us 2.66 us 2.66 us 0 ns
- movp 1 1.39 us 1.39 us 1.39 us 0 ns
- lea 1 1.41 us 1.41 us 1.41 us 0 ns
- mcall 1 1.37 us 1.37 us 1.37 us 0 ns
- movl 1 1.56 us 1.56 us 1.56 us 0 ns

if(sflag)
- beqw 1 2.14 us 2.14 us 2.14 us 0 ns

iob.puts("BASE:summary:Sample:n:Time:us "
+ s.str() + "\n");

- mframe 1 4.01 us 4.01 us 4.01 us 0 ns
- movp 1 2.87 us 2.87 us 2.87 us 0 ns
- mframe 1 1.75 us 1.75 us 1.75 us 0 ns
- movp 1 1.69 us 1.69 us 1.69 us 0 ns
- lea 1 1.15 us 1.15 us 1.15 us 0 ns
- mcall 1 2.35 us 2.35 us 2.35 us 0 ns
- addc 1 19.57 us 19.57 us 19.57 us 0 ns
- addc 1 8.55 us 8.55 us 8.55 us 0 ns
- lea 1 1.49 us 1.49 us 1.49 us 0 ns
- mcall 1 3.65 us 3.65 us 3.65 us 0 ns

iob.flush();
- mframe 1 4.50 us 4.50 us 4.50 us 0 ns
- movp 1 2.13 us 2.13 us 2.13 us 0 ns
- lea 1 967 ns 967 ns 967 ns 0 ns
- mcall 1 1.89 us 1.89 us 1.89 us 0 ns

}
...

- 7 -

return timestamp in microseconds
tstamp(): big
{

buf := array[128] of byte;
- newa 2000 6.98 us 5.37 us 80.91 us 2.43 us

n := sys->read(tsfd, buf, len buf);
- mframe 2000 3.05 us 2.59 us 4.05 us 227 ns
- movp 2000 2.33 us 2.14 us 3.21 us 120 ns
- movp 2000 1.19 us 1.14 us 2.93 us 73 ns
- lena 2000 1.07 us 907 ns 34.48 us 760 ns
- lea 2000 893 ns 860 ns 33.00 us 907 ns
- mcall 2000 133.81 us 89.88 us 8.61 ms 514.44 us

if(n < 0)
- blew 2000 2.27 us 1.76 us 3.43 us 313 ns

return big 0;

return big string buf[0:n];
- movp 2000 2.21 us 1.67 us 3.38 us 253 ns
- slicea 2000 10.06 us 8.35 us 39.31 us 1.40 us
- cvtac 2000 12.02 us 11.13 us 16.63 us 553 ns
- cvtcl 2000 16.39 us 15.78 us 45.16 us 787 ns
- ret 2000 10.52 us 9.79 us 13.97 us 333 ns
}

We can see from these figures that times for both calls to tstamp() are reasonably low. But look-
ing at the call to sys->read() in tstamp() we can see a maximum of just over 8½ milliseconds
for the mcall operation. We see too that this operation also has a high standard deviation of 514
microseconds across 2000 calls and so it looks like it may be the cause of the large observed
delays.

In order to get a second view of what was happening we surrounded the timing code with calls
to enable kernel profiling.

profon();
for(i:=0; i<NREP*10; i++) {

t0 = tstamp();
t1 = tstamp();
s.add(t1-t0);

}
profoff();
...
profon()
{

if(sys->write(kpctl, array of byte "startclr", 8) < 8)
error("kprof start");

}

profoff()
{

if(sys->write(kpctl, array of byte "stop", 4) < 4)
error("kprof stop");

}

Having previously bound in devkprof

bind -b ’#T’ /dev

and opened /dev/kpctl for writing. By examining the contents of /dev/kpdata with kprof we see that
the garbage collection functions markheap and rungc are taking up a surprisingly large amount of
kernel time for this operation.

- 8 -

total: 1460 in kernel text: 1460 outside kernel text: 0
KTZERO 80100000
ms % sym
130 8.9 markheap
110 7.5 iunlock
100 6.8 xec
90 6.1 rungc
80 5.4 chartorune
70 4.7 c2string
60 4.1 numbconv
50 3.4 string2c
40 2.7 sched
40 2.7 wakeup
30 2.0 splhi
30 2.0 freeptrs
30 2.0 memset
30 2.0 dodiv
30 2.0 _divvu
30 2.0 strtoll
20 1.3 _mulv
20 1.3 vmachine
20 1.3 unlock
20 1.3 runproc
20 1.3 DEA
10 0.6 kwrite

Interpreting the Results

In order to progress we need to look more closely at what is happening inside the call to
sys->read. As far as the kernel is concerned, there are two kinds of mcall operations; those
which result in a call to a builtin function and those which result in a call to a non-builtinfunction
in another module. Sys->read is of the former kind, it is a system builtin whose definition lies
in the function Sys_read. When executing mcall for a normal function the virtual machine primes
the register set so that on the next iteration the operations will be fetched from the code associ-
ated with the new function. When executing mcall for a builtin the virtual machine actually exe-
cutes the associated function before returning to the next operation. The code for Sys_read looks
like this:

void
Sys_read(void *fp)
{

int n;
F_Sys_read *f;

f = fp;
n = f->n;
if(f->buf == (Array*)H) {

*f->ret = 0;
return;

}
if(n > f->buf->len)

n = f->buf->len;

release();
*f->ret = kread(fdchk(f->fd), f->buf->data, n);
acquire();

}

The important thing to note is that in common with all builtin functions which must perform
some kernel function Sys_read releases the interpreter before carrying out its task and then
acquires it again before returning to the body of the mcall operation. Releasing the interpreter
means removing this Dis thread from the list of threads to be run and making ready another vir-
tual machine from the list of kernel processes waiting to use the interpreter, if necessary by first

- 9 -

0 500 1000

0

200

400

600

800

GCSCHED

Observation

Time (us)

Figure 5. Times for 1000 calls to rungc().

creating a new one. Once the interpreter has been released the process carries out its operation,
in this case a call to kread, and then attempts to reacquire the interpreter. If no other process is
using the interpreter it will get it back immediately, otherwise the process sets its state to Queue-
ing and calls sched() to wait for its turn. How long it has to wait depends on how many other
threads are running and whether they are compiled or interpreted. If another process wants to
use the interpreter then it may run for a short period of time before making a call to rungc() to
perform a small amount of garbage collection and then yielding control to our process. If the
other process is running an interpreted thread then it may execute for up to 2048 Dis instructions
or for a more variable time if it is a compiled thread. We can see the likely effect of this by timing
calls to rungc. The following code does this inside devbench :

log("GCSCHED:1d:Observation:n:Time:us");
for(i=0; i<1000; i++) {

(*ts)(&t0);
rungc(head);
(*ts)(&t1);
log(" %.2f", ts2us(t1-t0));
release();
acquire();

}
log("\n");

The calls to release() and acquire() allow other Dis threads to run and so exercise the mem-
ory allocation code in much the same way that the same calls in tstamp() do. On each call to
rungc() the garbage collector visits 50 blocks in the heap. The times for 1000 calls to rungc are
shown in Figure 5. Running

cat results | bcut 1-201 | plot

will give us just the first 200 data points in a little more detail, these are shown in Figure 6. We
can see that the time for calls to rungc has a very repeatable pattern, but there is no sign of the
large 6 millisecond delay.

Garbage collection is also done during idle virtual machine cycles. If no thread is ready to run
the interpreter calls execatidle() and then sleeps until there is something to do.

 This benchmark is called GCSCHED in the devbench benchmark suite.

- 10 -

0 50 100 150 200

0

200

400

600

800

GCSCHED

Observation

Time (us)

Figure 6. Times for the first 200 calls to rungc().

Execatidle() attempts to complete 3 epochs of garbage collection, checking after each call to
rungc() to see if any thread is ready to run; if a thread is ready, normal interpretation is
resumed immediately.

The following code in devbench is used to determine how long it might take the garbage collector
to run 3 epochs :

int
idlegc(void *p)
{

int done;
Prog *head;
vlong t0, t1, tot;
USED(p);

head = progn(0); /* isched.head */
done = gccolor + 3;
tot = 0;
while(gccolor < done && gcruns()) {

if(tready(nil))
break;

(*ts)(&t0);
rungc(head);
(*ts)(&t1);
tot += t1-t0;

}
log(" %.2f", ts2us(tot));
nidle--;
if(nidle == 0) {

log("0);
return 1;

}
return 0;

}

The code is invoked by assigning 100 to nidle and then calling

atidle(idlegc, 0);

 This benchmark is called GCIDLE in the devbench benchmark suite.

- 11 -

0 50 100

0

5000

GCIDLE

Observation

Time (us)

Figure 7. Times for performing three epochs of garbage collection.

so that the interpreter will call this code when idle in the same way that it calls the normal gar-
bage collection code.

The function tready() is defined as

tready(void *a)
{

return isched.runhd != nil || isched.yield != 0;
}

returning true whenever there is a thread in the run queue or when another interpreter kernel
process has called acquire() to request that control of the interpreter be yielded to it. In fact, the
code mirrors the garbage collection code in the interpreter, breaking when another thread is
ready to be run.

Figure 7 shows the times for performing three epochs of garbage collection. It is clear from these
results that idle garbage collection can take some considerable time even when the system is rela-
tively quiet. The times for completing 3 epochs of garbage collection were of the same order of
magnitude as the large delays we were noticing with the timestamping earlier. However, the
system is clearly designed to relinquish control whenever another thread needs to run. It was
not, therefore, clear that this could be the cause of these delays.

An Explanation

Clock interrupts happen on this system at regular intervals of 10 milliseconds. At each such
interrupt the handler checks to see if any kernel processes are ready to run, and if so it calls sched.
This gives the system its preemptive scheduling. Suppose we are executing a call to
sys->read(). If after calling release but before returning from the call to kread and calling
acquire a clock interrupt goes off then another process may grab the interpreter and complete a
scheduler quantum. If no other threads are ready to run because, like us, they are still in the ker-
nel then tready() will return false and so it will choose to perform idle garbage collection.
There is an upper bound on how long this may go on for; it is the minimum of the time it takes to
perform three epochs of garbage collection and the time to the next clock interrupt which may be
as much as 10 milliseconds. This would give rise to the periodic high values we have seen and
would likely result in delays of the same order of magnitude as those that we have seen.

- 12 -

One way to check this hypothesis would be to modify the condition upon which the idle garbage
collection is halted to include a test for kernel processes that are ready to run.

The existing code in the function port/dis.c:execatidle() breaks from the process of garbage collec-
tion only when another interpreter requests control or when another thread is ready to run.

done = gccolor+3;
while(gccolor < done && gcruns()) {

if(isched.yield != 0 || isched.runhd != isched.runtl)
break;

rungc(isched.head);
}

The result of this is that when a thread makes a call that takes it into the kernel it is effectively
given a lower priority than the idle time garbage collection. This effect can only be seen if a clock
interrupt happens which results in control being switched to an interpreter thread which com-
pletes its execution quantum and enters idle time garbage collection. Ordinarily, a thread in the
kernel will either run to completion or will, itself, call sched() while waiting for an event to
occur.

This effect will be visible in any Inferno thread that makes a call to a system function which then
results in a release of the interpreter - not just this benchmarking application.

Improving the Results

We have changed the code in execatidle to call sched on detection of ready kernel processes.

It now looks like this:

done = gccolor+3;
while(gccolor < done && gcruns()) {

if(isched.yield != 0 || isched.runhd != isched.runtl)
break;

rungc(isched.head);
sched();

}

Processes in the kernel running at the same priority as the collector are interleaved with the col-
lector. If such a process returns from a kernel operation and attempts to acquire the interpreter
then this loop will exit the next time around because isched.yield will be set. Kernel pro-
cesses which do not require the interpreter, such as the network timers, will get to run without
interrupting the garbage collection. The effect of this change can be, readily, seen in much
smaller delays shown in Figure 8. The large 6 millisecond delays have disappeared but regular 1
millisecond delays still remain. Looking more closely at the first 200 times, in Figure 9, we can see
that the pattern looks very similar to the pattern we know that we get from repeatedly calling
rungc(). Indeed, this is most likely the cause of the regular pattern. The call to rungc after com-
pleting each quantum of scheduler activity results in quite a variable delay which means that the
real time taken in executing tstamp() will be difficult to predict. This will be true for any
Limbo function that calls a system builtin which in turn releases the interpreter.

I suspect that the single large delay will occur when the garbage collector completes an epoch
and runs through marking each root as a propagator. There may be ways to improve the situa-
tion by smoothing this operation, perhaps by making it incremental or by temporarily disabling
garbage collection or by optimising the conditions under which garbage collection is done. How-
ever, garbage collection has to be done sometime, and it is not clear that, in general, deferring it is
always the best thing to do -we may get good results when the system is quiet but very bad

 A first attempt checked the number of processes ready to run, making the call to sched conditional, but that did not cor-
rectly account for their priorities relative to the process running the collector.

- 13 -

0 500 1000

200

400

600

800

1000

BASE

Observation

Time (us)

Figure 8. Improved results from idle garbage collection change

0 50 100 150 200

200

400

600

800

1000

BASE

Observation

Time (us)

Figure 9. Improved results from idle garbage collection change - the first 200 values

results when garbage collection is required. It would seem likely that there may have been some
work done on this aspect of the virtual machine in later incarnations of the Inferno system.

There are two ways forward. We could accept that garbage collection is an integral part of the
system and not try to measure small units of time - instead, we could measure the time for a lot of
operations and average them out and then subtract the known garbage collection background
count from the overall time to get a feel for how much time taken performing our operation of
interest. There are several problems with this approach. Firstly, it seems unreasonable not to be
able to measure something small with Inferno; frustrating too, when the problem is caused by a
visually regular disturbance. Secondly, measuring something over a long period of time gives
ample opportunity for other factors to interfere with the operation of interest (for example, inter-
rupts from external interfaces).

- 14 -

0 500 1000

0

50

100

150

200

250

BASE

Observation

Time (us)

Figure 10. Further improvement by using a builtin timestamp.

The second way forward is to modify our measurement process so that its interaction with the
virtual machine is minimised in such a way that it can be used more predictably and, hence, is
more reliable. We did this by providing a builtin function bench->microsec() and by provid-
ing an interface which allowed garbage collection to be disabled for a period of time.

The Limbo module prototype looks like this:

{
PATH: con "$Bench";

microsec: fn(): big;
disablegc: fn();
enablegc: fn();

};

and the Limbo function to return a timestamp just calls the builtin.

xstamp(): big
{

return bench->microsec();
}

Using xstamp() in place of tstamp() without disabling garbage collection results in a significant
improvement to the times returned by the BASE benchmark . These results are shown in Figure
10. I suspect that the few large values are as a result of external interrupts or scheduler quantum
garbage collection. The distribution of these values is shown in Figure 11. Out of the 1000 mea-
surements all but 6 of them were recorded at 6 microseconds.

 The kernel used to make this recording (and all subsequent in this document) has had the modifications made to the idle
garbage collection code described earlier. We found that switching to using a builtin with the old kernel did result in
much better times but could still occasionally fall foul of a clock interrupt.

- 15 -

0 50 100 150 200 250

0

500

1000

BASE

Time (us)

Frequency

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..�

� � �� �

Figure 11. The distribution of the results shown in Figure 10

By wrapping the entire benchmark with calls to

bench->disablegc()

and

bench->enablegc()

which disable and then reenable all garbage collection the figures can be improved even further.

The histogram of timestamps obtained when garbage collection is completely disabled is shown
in Figure 12. It is clear that the values we are now getting from xstamp() are much more accept-
able. Out of the 1000 measurements, five were recorded at 12 microseconds, one at 8 microsec-
onds and the remainder at either 6 or 7 microseconds.

6 8 10 12

0

200

400

600

BASE

Time (us)

Frequency

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..�

..

..

..

..

..

..

..

..

..

..

..

.�

� �

Figure 12. The distribution of results obtained when garbage collection is completely disabled.

- 16 -

Conclusion

Comparing the histogram for the original measurements with the one obtained by making a sim-
ple change to the interpreter and by using a builtin instead of using sys->read() it is clear that
considerable improvements have been made. This behaviour will be visible in any Inferno thread
that makes a call to a system function which, in turn, causes the interpreter to be released. These
effects will be present in any Inferno application that uses, for example, sys->read(), sys-
>write(), sys->mount() and sys->bind() or any other such builtin system functions.

The decision to enable or disable garbage collection whilst benchmarking is a difficult one. Dis-
abling it results in slightly better measurement, but is somewhat less realistic. The improvement
gained by disabling it doesn’t seem good enough to justify the likely criticism which might be
levelled at the subsequent results.

It would appear that to enable reliable benchmarking of Limbo programs under Inferno two
changes should be applied. Firstly, a simple change should be made to the interpreter to prevent
idle garbage collection from grabbing a large time slot when scheduling occurs at a clock inter-
rupt and one or more interpreter threads are in kernel operations. Secondly, making the times-
tamp function a builtin results in a simpler interface to the kernel and results in a measurement
process whose execution time is reliable. Applied together, these changes make it possible to per-
form reliable benchmarking of Limbo programs under Inferno.

