#include "u.h" #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "io.h" #include "ureg.h" /* * tlb entry 0 is used only by mmuswitch() to set the current tlb pid. */ /* * Kmap entries start at tlb index 1 and work their way up until * kmapinval() removes them. They then restart at 1. As long as there * are few kmap entries they will not pass TLBROFF (the WIRED tlb entry * limit) and interfere with user tlb entries. */ /* * All invalidations of the tlb are via indexed entries. The virtual * address used is always 'KZERO | (x<<(PGSHIFT+1) | currentpid' where * 'x' is the index into the tlb. This ensures that the current pid doesn't * change and that no two invalidated entries have matching virtual * addresses just in case SGI/MIPS ever makes a chip that cares (as * they keep threatening). These entries should never be used in * lookups since accesses to KZERO addresses don't go through the tlb. */ #define TLBINVAL(x, pid) puttlbx(x, KZERO|((x)<<(PGSHIFT+1))|(pid), 0, 0, PGSZ4K) void tlbinit(void) { int i; for(i=0; inext = k+1; k->next = 0; m->ktlbnext = TLBROFF; } /* * Arrange that the KMap'd virtual address will hit the same * primary cache line as pg->va by making bits 14...12 of the * tag the same as virtual address. These bits are the index * into the primary cache and are checked whenever accessing * the secondary cache through the primary. Violation causes * a VCE trap. */ KMap * kmap(Page *pg) { int s; KMap *k; ulong pte; ulong x, virt; s = splhi(); lock(&kmaplock); if(kmapfree == 0) { unlock(&kmaplock); kmapinval(); /* try and free some */ lock(&kmaplock); if(kmapfree == 0) panic("out of kmap"); } k = kmapfree; kmapfree = k->next; k->pg = pg; /* One for the allocation, * One for kactive */ k->ref = 2; k->konmach[m->machno] = m->kactive; m->kactive = k; virt = pg->va; /* bits 14..12 form the secondary-cache virtual index */ virt &= PIDX; virt |= KMAPADDR | ((k-kpte)<virt = virt; pte = PPN(pg->pa)|PTECOHERXCLW|PTEGLOBL|PTEWRITE|PTEVALID; if(virt & BY2PG) { k->phys0 = PTEGLOBL|PTECOHERXCLW; k->phys1 = pte; } else { k->phys0 = pte; k->phys1 = PTEGLOBL|PTECOHERXCLW; } x = m->ktlbnext; k->tlbi[m->machno] = x; puttlbx(x, (virt&~BY2PG)|TLBPID(tlbvirt()), k->phys0, k->phys1, PGSZ4K); if(++x >= NTLB) m->ktlbnext = TLBROFF; else m->ktlbnext = x; unlock(&kmaplock); splx(s); return k; } void kunmap(KMap *k) { int s; s = splhi(); if(decref(k) == 0) { k->virt = 0; k->phys0 = 0; k->phys1 = 0; k->pg = 0; lock(&kmaplock); k->next = kmapfree; kmapfree = k; unlock(&kmaplock); } splx(s); } void kfault(Ureg *ur) { int mno; KMap *k, *f; ulong x, index, virt, addr; mno = m->machno; addr = ur->badvaddr; index = (addr & ~KMAPADDR) >> KMAPSHIFT; if(index >= KPTESIZE) panic("kmapfault: %lux", addr); k = &kpte[index]; if(k->virt == 0 || k->ref < 1) panic("kmapfault: unmapped %lux", addr); for(f = m->kactive; f; f = f->konmach[mno]) if(f == k) break; if(f == 0) { incref(k); k->konmach[mno] = m->kactive; m->kactive = k; } x = m->ktlbnext; virt = (k->virt&~BY2PG)|TLBPID(tlbvirt()); puttlbx(x, virt, k->phys0, k->phys1, PGSZ4K); k->tlbi[mno] = x; if(++x >= NTLB) m->ktlbnext = TLBROFF; else m->ktlbnext = x; } void kmapinval() { int mno, curpid; KMap *k, *next; if(m->kactive == 0) return; curpid = PTEPID(TLBPID(tlbvirt())); mno = m->machno; for(k = m->kactive; k; k = next) { next = k->konmach[mno]; TLBINVAL(k->tlbi[mno], curpid); kunmap(k); } m->kactive = 0; } void mmuswitch(Proc *p) { int tp; if(p->newtlb) { memset(p->pidonmach, 0, sizeof p->pidonmach); p->newtlb = 0; } tp = p->pidonmach[m->machno]; if(tp == 0) tp = newtlbpid(p); puttlbx(0, KZERO|PTEPID(tp), 0, 0, PGSZ4K); } void mmurelease(Proc *p) { memset(p->pidonmach, 0, sizeof p->pidonmach); } /* * Process must be splhi */ int newtlbpid(Proc *p) { int i, s; Proc **h; i = m->lastpid; h = m->pidproc; for(s = 0; s < NTLBPID; s++) { i++; if(i >= NTLBPID) i = 1; if(h[i] == 0) break; } if(h[i]) purgetlb(i); if(h[i] != 0) panic("newtlb"); m->pidproc[i] = p; p->pidonmach[m->machno] = i; m->lastpid = i; return i; } void putmmu(ulong tlbvirt, ulong tlbphys, Page *pg) { int s; short tp; char *ctl; Softtlb *entry; s = splhi(); tp = up->pidonmach[m->machno]; if(tp == 0) tp = newtlbpid(up); /* * Fix up EISA memory address which are greater * than 32 bits physical: 0x100000000 */ if((tlbphys&0xffff0000) == PPN(Eisamphys)) { tlbphys &= ~PPN(Eisamphys); tlbphys |= 0x04000000; } tlbvirt |= PTEPID(tp); if((tlbphys & PTEALGMASK) != PTEUNCACHED) { tlbphys &= ~PTEALGMASK; tlbphys |= PTECOHERXCLW; } entry = putstlb(tlbvirt, tlbphys); puttlb(entry->virt, entry->phys0, entry->phys1); ctl = &pg->cachectl[m->machno]; switch(*ctl) { case PG_TXTFLUSH: icflush((void*)pg->va, BY2PG); *ctl = PG_NOFLUSH; break; case PG_DATFLUSH: dcflush((void*)pg->va, BY2PG); *ctl = PG_NOFLUSH; break; case PG_NEWCOL: cleancache(); /* Too expensive */ *ctl = PG_NOFLUSH; break; } splx(s); } void purgetlb(int pid) { int i, mno; Proc *sp, **pidproc; Softtlb *entry, *etab; m->tlbpurge++; /* * find all pid entries that are no longer used by processes */ mno = m->machno; pidproc = m->pidproc; for(i=1; ipidonmach[mno] != i) pidproc[i] = 0; } /* * shoot down the one we want */ sp = pidproc[pid]; if(sp != 0) sp->pidonmach[mno] = 0; pidproc[pid] = 0; /* * clean out all dead pids from the stlb; */ entry = m->stb; for(etab = &entry[STLBSIZE]; entry < etab; entry++) if(pidproc[TLBPID(entry->virt)] == 0) entry->virt = 0; /* * clean up the hardware */ for(i=TLBROFF; inewtlb = 1; mmuswitch(up); splx(s); } void clearmmucache(void) { } Softtlb* putstlb(ulong tlbvirt, ulong tlbphys) { int k; Softtlb *entry; k = tlbvirt & BY2PG; tlbvirt &= ~BY2PG; entry = &m->stb[(tlbvirt ^ (tlbvirt>>13)) & (STLBSIZE-1)]; if(entry->virt != tlbvirt) { entry->virt = tlbvirt; entry->phys0 = 0; entry->phys1 = 0; } if(k) entry->phys1 = tlbphys; else entry->phys0 = tlbphys; if(entry->phys0 == 0 && entry->phys1 == 0) entry->virt = 0; return entry; }