/* Copyright (C) 1993, 1994 Aladdin Enterprises. All rights reserved. This file is part of Aladdin Ghostscript. Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Refer to the Aladdin Ghostscript Free Public License (the "License") for full details. Every copy of Aladdin Ghostscript must include a copy of the License, normally in a plain ASCII text file named PUBLIC. The License grants you the right to copy, modify and redistribute Aladdin Ghostscript, but only under certain conditions described in the License. Among other things, the License requires that the copyright notice and this notice be preserved on all copies. */ /* isave.c */ /* Save/restore manager for Ghostscript interpreter */ #include "ghost.h" #include "memory_.h" #include "errors.h" #include "gsexit.h" #include "gsstruct.h" #include "iastate.h" #include "iname.h" #include "ipacked.h" #include "isave.h" #include "isstate.h" #include "store.h" /* for ref_assign */ #include "ivmspace.h" #include "gsutil.h" /* gs_next_ids prototype */ /* Imported restore routines */ extern void file_save(P0()); extern void file_restore(P1(const alloc_save_t *)); extern void file_forget_save(P1(const alloc_save_t *)); extern void font_restore(P1(const alloc_save_t *)); /* Structure descriptor */ private_st_alloc_save(); /* Define the maximum amount of data we are willing to scan repeatedly -- */ /* see below for details. */ private const long max_repeated_scan = 5000; /* * The logic for saving and restoring the state is complex. * Both the changes to individual objects, and the overall state * of the memory manager, must be saved and restored. */ /* * To save the state of the memory manager: * Save the state of the current chunk in which we are allocating. * Shrink the current chunk to its inner unallocated region. * Save and reset the free block chains. * By doing this, we guarantee that no object older than the save * can be freed. * * To restore the state of the memory manager: * Free all chunks newer than the save, and the descriptor for * the inner chunk created by the save. * Make current the chunk that was current at the time of the save. * Restore the state of the current chunk. * * In addition to save ("start transaction") and restore ("abort transaction"), * we support forgetting a save ("commit transation"). To forget a save: * Reassign to the next outer save all chunks newer than the save. * Free the descriptor for the inner chunk, updating its outer chunk * to reflect additional allocations in the inner chunk. * Concatenate the free block chains with those of the outer save. */ /* * For saving changes to individual objects, we add an "attribute" bit * (l_new) that logically belongs to the slot where the ref is stored, * not to the ref itself. The bit means "the contents of this slot * have been changed, or the slot was allocated, since the last save." * To keep track of changes since the save, we associate a chain of * pairs that remembers the old contents of slots. * * When creating an object, if the save level is non-zero: * Set l_new in all slots. * * When storing into a slot, if the save level is non-zero: * If l_new isn't set, save the address and contents of the slot * on the current contents chain. * Set l_new after storing the new value. * * To do a save: * If the save level is non-zero: * Reset l_new in all slots on the contents chain, and in all * objects created since the previous save. * Push the head of the contents chain, and reset the chain to empty. * * To do a restore: * Check all the stacks to make sure they don't contain references * to objects created since the save. * Restore all the slots on the contents chain. * Pop the contents chain head. * If the save level is now non-zero: * Scan the newly restored contents chain, and set l_new in all * the slots it references. * Scan all objects created since the previous save, and set * l_new in all the slots of each object. * * To forget a save: * If the save level is greater than 1: * Set l_new as for a restore, per the next outer save. * Concatenate the next outer contents chain to the end of * the current one. * If the save level is 1: * Reset l_new as for a save. * Free the contents chain. */ /* * A consequence of the foregoing algorithms is that the cost of a save * is proportional to the total amount of data allocated since the previous * save. If a PostScript program reads in a large amount of setup code * and then uses save/restore heavily, each save/restore will be expensive. * To mitigate this, we check to see how much data we are scanning at a save; * if it is large, we do a second, invisible save. This greatly reduces * the cost of inner saves, at the expense of possibly saving some changes * twice that otherwise would only have to be saved once. */ /* * The presence of global and local VM complicates the situation further. * There is a separate save chain and contents chain for each VM space. * When multiple contexts are fully implemented, save and restore will have * the following effects, according to the privacy status of the current * context's global and local VM: * Private global, private local: * The outermost save saves both global and local VM; * otherwise, save only saves local VM. * Shared global, private local: * Save only saves local VM. * Shared global, shared local: * Save only saves local VM, and suspends all other contexts * sharing the same local VM until the matching restore. * Since we do not currently implement multiple contexts, only the first * case is relevant. * * Note that when saving the contents of a slot, the choice of chain * is determined by the VM space in which the slot is allocated, * not by the current allocation mode. */ #define set_in_save(dmem)\ ((dmem)->test_mask = (dmem)->new_mask = l_new) #define set_not_in_save(dmem)\ ((dmem)->test_mask = ~0, (dmem)->new_mask = 0) /* Structure for saved change chain for save/restore. */ typedef struct alloc_change_s alloc_change_t; struct alloc_change_s { alloc_change_t *next; ref_packed *where; ref contents; bool is_static; }; #define ptr ((alloc_change_t *)vptr) private CLEAR_MARKS_PROC(change_clear_marks) { if ( r_is_packed(&ptr->contents) ) r_clear_pmark((ref_packed *)&ptr->contents); else r_clear_attrs(&ptr->contents, l_mark); } private ENUM_PTRS_BEGIN(change_enum_ptrs) return 0; ENUM_PTR(0, alloc_change_t, next); case 1: *pep = ptr->where; return ptr_ref_type; case 2: *pep = &ptr->contents; return ptr_ref_type; ENUM_PTRS_END private RELOC_PTRS_BEGIN(change_reloc_ptrs) { RELOC_PTR(alloc_change_t, next); if ( !ptr->is_static ) ptr->where = gs_reloc_ref_ptr(ptr->where, gcst); if ( r_is_packed(&ptr->contents) ) r_clear_pmark((ref_packed *)&ptr->contents); else { gs_reloc_refs((ref_packed *)&ptr->contents, (ref_packed *)(&ptr->contents + 1), gcst); r_clear_attrs(&ptr->contents, l_mark); } } RELOC_PTRS_END #undef ptr gs_private_st_complex_only(st_alloc_change, alloc_change_t, "alloc_change", change_clear_marks, change_enum_ptrs, change_reloc_ptrs, 0); /* Debugging printout */ #ifdef DEBUG private void alloc_save_print(alloc_change_t *cp, bool print_current) { dprintf2(" 0x%lx: 0x%lx: ", (ulong)cp, (ulong)cp->where); if ( r_is_packed(&cp->contents) ) { if ( print_current ) dprintf2("saved=%x cur=%x\n", *(ref_packed *)&cp->contents, *cp->where); else dprintf1("%x\n", *(ref_packed *)&cp->contents); } else { if ( print_current ) dprintf6("saved=%x %x %lx cur=%x %x %lx\n", r_type_attrs(&cp->contents), r_size(&cp->contents), (ulong)cp->contents.value.intval, r_type_attrs((ref *)cp->where), r_size((ref *)cp->where), (ulong)((ref *)cp->where)->value.intval); else dprintf3("%x %x %lx\n", r_type_attrs(&cp->contents), r_size(&cp->contents), (ulong)cp->contents.value.intval); } } #endif /* Forward references */ private void restore_resources(P1(alloc_save_t *)); private void restore_free(P1(gs_ref_memory_t *)); private long save_set_new(P2(gs_ref_memory_t *, bool)); private void save_set_new_changes(P2(gs_ref_memory_t *, bool)); /* Initialize the save/restore machinery. */ void alloc_save_init(gs_dual_memory_t *dmem) { dmem->save_level = 0; set_not_in_save(dmem); } /* Save the state. */ private alloc_save_t *alloc_save_space(P2(gs_ref_memory_t *, gs_dual_memory_t *)); ulong alloc_save_state(gs_dual_memory_t *dmem, void *cdata) { gs_ref_memory_t *lmem = dmem->space_local; gs_ref_memory_t *gmem = dmem->space_global; ulong sid = gs_next_ids(2); #define alloc_free_save(mem, s, scn, icn)\ { chunk_t *inner = (mem)->pcc;\ gs_free_object((gs_memory_t *)(mem), s, scn);\ gs_free_object((mem)->parent, inner, icn);\ } bool global = dmem->save_level == 0 && gmem != lmem && gmem->num_contexts == 1; alloc_save_t *gsave = (global ? alloc_save_space(gmem, dmem) : (alloc_save_t *)0); alloc_save_t *lsave = alloc_save_space(lmem, dmem); if ( lsave == 0 || (global && gsave == 0) ) { if ( lsave != 0 ) alloc_free_save(lmem, lsave, "alloc_save_state(local save)", "alloc_save_state(local inner)"); if ( gsave != 0 ) alloc_free_save(gmem, gsave, "alloc_save_state(global save)", "alloc_save_state(global inner)"); return 0; } #undef alloc_free_save if ( gsave != 0 ) { gsave->id = sid + 1; gsave->client_data = 0; /* Do the right thing about names. */ if ( gsave->name_cnt != max_name_count ) lsave->name_cnt = gsave->name_cnt, gsave->name_cnt = max_name_count; } lsave->id = sid; lsave->client_data = cdata; /* Reset the l_new attribute in all slots. The only slots that */ /* can have the attribute set are the ones on the changes chain, */ /* and ones in objects allocated since the last save. */ if ( dmem->save_level != 0 ) { long scanned = save_set_new(&lsave->state, false); if ( scanned > max_repeated_scan ) { /* Do a second, invisible save. */ alloc_save_t *rsave; /* Notify the file machinery of the first save. */ file_save(); rsave = alloc_save_space(lmem, dmem); if ( rsave != 0 ) { rsave->id = sid; rsave->client_data = cdata; lsave->id = 0; /* mark as invisible */ lsave->client_data = 0; } } } dmem->save_level++; set_in_save(dmem); /* Notify the file machinery we just did a save. */ file_save(); return sid; } /* Save the state of one space (global or local). */ private alloc_save_t * alloc_save_space(gs_ref_memory_t *mem, gs_dual_memory_t *dmem) { gs_ref_memory_t save_mem; alloc_save_t *save; chunk_t *inner = 0; if ( mem->cc.ctop - mem->cc.cbot > sizeof(chunk_head_t) ) { inner = gs_alloc_struct(mem->parent, chunk_t, &st_chunk, "alloc_save_space(inner)"); if ( inner == 0 ) return 0; } save_mem = *mem; alloc_close_chunk(mem); gs_memory_status((gs_memory_t *)mem, &mem->previous_status); ialloc_reset(mem); mem->cc.cnext = mem->cc.cprev = 0; if ( inner != 0 ) { /* Create an inner chunk to cover only the unallocated part. */ alloc_init_chunk(&mem->cc, mem->cc.cbot, mem->cc.ctop, true, mem->pcc); *inner = mem->cc; mem->pcc = inner; mem->cfirst = mem->clast = inner; } else { /* Not enough room to create an inner chunk. */ mem->pcc = 0; mem->cfirst = mem->clast = 0; mem->cc.cbot = mem->cc.ctop = 0; } save = gs_alloc_struct((gs_memory_t *)mem, alloc_save_t, &st_alloc_save, "alloc_save_space(save)"); if_debug3('u', "[u]save at 0x%lx: cbot=0x%lx ctop=0x%lx\n", (ulong)save, (ulong)inner->cbot, (ulong)inner->ctop); if ( save == 0 ) { gs_free_object(mem->parent, inner, "alloc_save_space(inner)"); *mem = save_mem; return 0; } save->state = save_mem; save->dmem = dmem; save->name_cnt = (name_memory() == (gs_memory_t *)mem ? name_count() : max_name_count); save->is_current = (dmem->current == mem); mem->saved = save; return save; } /* Record a state change that must be undone for restore, */ /* and mark it as having been saved. */ int alloc_save_change(gs_dual_memory_t *dmem, const ref *pcont, ref_packed *where, client_name_t cname) { gs_ref_memory_t *mem; register alloc_change_t *cp; if ( dmem->save_level == 0 ) return 0; /* no saving */ mem = (pcont == NULL ? dmem->space_local : dmem->spaces.indexed[r_space(pcont) >> r_space_shift]); cp = gs_alloc_struct((gs_memory_t *)mem, alloc_change_t, &st_alloc_change, "alloc_save_change"); if ( cp == 0 ) return -1; cp->next = mem->changes; cp->where = where; cp->is_static = pcont == NULL; if ( r_is_packed(where) ) *(ref_packed *)&cp->contents = *where; else { ref_assign_inline(&cp->contents, (ref *)where); r_set_attrs((ref *)where, l_new); } mem->changes = cp; #ifdef DEBUG if ( gs_debug_c('U') ) { dprintf1("[u]save(%s)", client_name_string(cname)); alloc_save_print(cp, false); } #endif return 0; } /* Return the current save level */ int alloc_save_level(const gs_dual_memory_t *dmem) { return dmem->save_level; } /* Test whether a reference would be invalidated by a restore. */ bool alloc_is_since_save(const void *vptr, const alloc_save_t *save) { #define ptr ((const char *)vptr) /* A reference postdates a save iff it is in a chunk allocated */ /* since the save (including the carried-over inner chunk). */ const gs_dual_memory_t *dmem = save->dmem; register const gs_ref_memory_t *mem = dmem->space_local; if_debug2('U', "[U]is_since_save 0x%lx, 0x%lx:\n", (ulong)ptr, (ulong)save); if ( mem->saved == 0 ) { /* This is a special case, the final 'restore' from */ /* alloc_restore_all. */ return true; } /* Check against chunks allocated since the save. */ /* (There may have been intermediate saves as well.) */ for ( ; ; mem = &mem->saved->state ) { const chunk_t *cp; if_debug1('U', "[U]checking mem=0x%lx\n", (ulong)mem); for ( cp = mem->cfirst; cp != 0; cp = cp->cnext ) { if ( ptr_is_within_chunk(ptr, cp) ) { if_debug3('U', "[U+]in new chunk 0x%lx: 0x%lx, 0x%lx\n", (ulong)cp, (ulong)cp->cbase, (ulong)cp->cend); return true; } if_debug1('U', "[U-]not in 0x%lx\n", (ulong)cp); } if ( mem->saved == save ) { /* We've checked all the more recent saves, */ /* must be OK. */ break; } } /* If we're about to do a global restore (save level = 1), */ /* we also have to check the global save. */ /* Global saves can't be nested, which makes things easy. */ if ( dmem->save_level == 1 && (mem = dmem->space_global) != dmem->space_local ) { const chunk_t *cp; if_debug1('U', "[U]checking global mem=0x%lx\n", (ulong)mem); for ( cp = mem->cfirst; cp != 0; cp = cp->cnext ) if ( ptr_is_within_chunk(ptr, cp) ) { if_debug3('U', "[U+] new chunk 0x%lx: 0x%lx, 0x%lx\n", (ulong)cp, (ulong)cp->cbase, (ulong)cp->cend); return true; } } return false; #undef ptr } /* Test whether a name would be invalidated by a restore. */ bool alloc_name_is_since_save(const ref *pnref, const alloc_save_t *save) { return name_is_since_count(pnref, save->name_cnt); } bool alloc_name_index_is_since_save(uint nidx, const alloc_save_t *save) { return name_index_is_since_count(nidx, save->name_cnt); } /* Get the saved state with a given ID. */ alloc_save_t * alloc_find_save(const gs_dual_memory_t *dmem, ulong sid) { alloc_save_t *sprev = dmem->space_local->saved; if ( sid == 0 ) return 0; /* invalid id */ while ( sprev != 0 ) { if ( sprev->id == sid ) return sprev; sprev = sprev->state.saved; } return 0; } /* Get the client data from a saved state. */ void * alloc_save_client_data(const alloc_save_t *save) { return save->client_data; } /* Restore the state. The client is responsible for calling */ /* alloc_find_save to get the save object, and for ensuring that */ /* there are no surviving pointers for which alloc_is_since_save is true. */ private void restore_space(P1(gs_ref_memory_t *)); void alloc_restore_state(alloc_save_t *save) { gs_dual_memory_t *dmem = save->dmem; gs_ref_memory_t *mem = dmem->space_local; alloc_save_t *sprev; /* Iteratively restore the state. */ do { ulong sid; sprev = mem->saved; sid = sprev->id; restore_resources(sprev); /* release other resources */ restore_space(mem); /* release memory */ if ( sid != 0 ) dmem->save_level--; } while ( sprev != save ); if ( dmem->save_level == 0 ) { /* This is the outermost save, which might also */ /* need to restore global VM. */ mem = dmem->space_global; if ( mem != dmem->space_local && mem->saved != 0 ) restore_space(mem); set_not_in_save(dmem); } else { /* Set the l_new attribute in all slots that are now new. */ save_set_new(mem, true); } } /* Restore the memory of one space, by undoing changes and freeing */ /* memory allocated since the save. */ private void restore_space(gs_ref_memory_t *mem) { alloc_save_t *save = mem->saved; alloc_save_t saved; if_debug2('u', "[u]restore from 0x%lx, id = %lu\n", (ulong)save, (ulong)save->id); /* Undo changes since the save. */ { register alloc_change_t *cp = mem->changes; while ( cp ) { #ifdef DEBUG if ( gs_debug_c('U') ) { dprintf("[U]restore"); alloc_save_print(cp, true); } #endif if ( r_is_packed(&cp->contents) ) *cp->where = *(ref_packed *)&cp->contents; else ref_assign_inline((ref *)cp->where, &cp->contents); cp = cp->next; } } /* Free memory allocated since the save. */ /* Note that this frees all chunks except the inner one */ /* belonging to this level. */ saved = *save; restore_free(mem); /* Restore the allocator state. */ { int num_contexts = mem->num_contexts; /* don't restore */ *mem = saved.state; mem->num_contexts = num_contexts; } alloc_open_chunk(mem); /* Make the allocator current if it was current before the save. */ if ( saved.is_current ) { gs_dual_memory_t *dmem = saved.dmem; dmem->current = mem; dmem->current_space = mem->space; } } /* Restore to the initial state, releasing all resources. */ /* The allocator is no longer usable after calling this routine! */ void alloc_restore_all(gs_dual_memory_t *dmem) { /* Restore to a state outside any saves. */ while ( dmem->save_level != 0 ) alloc_restore_state(dmem->space_local->saved); /* Release resources other than memory, using a fake save object. */ { alloc_save_t empty_save; empty_save.dmem = dmem; empty_save.name_cnt = max_name_count; /* don't bother to release */ restore_resources(&empty_save); } /* Finally, release memory. */ restore_free(dmem->space_local); { gs_ref_memory_t *mem = dmem->space_global; if ( mem != dmem->space_local ) { if ( !--(mem->num_contexts) ) restore_free(mem); } } } /* Release resources for a restore */ private void restore_resources(alloc_save_t *sprev) { /* Close inaccessible files. */ file_restore(sprev); /* Remove entries from font and character caches. */ font_restore(sprev); /* Adjust the name table. */ name_restore(sprev->name_cnt); } /* Release memory for a restore. */ private void restore_free(gs_ref_memory_t *mem) { /* Free chunks allocated since the save. */ chunk_t *cp; chunk_t *csucc; /* Free the chunks in reverse order, to encourage LIFO behavior. */ for ( cp = mem->clast; cp != 0; cp = csucc ) { csucc = cp->cprev; /* save before freeing */ alloc_free_chunk(cp, mem); } } /* Forget a save, by merging this level with the next outer one. */ private void combine_space(P1(gs_ref_memory_t *)); private void forget_changes(P1(gs_ref_memory_t *)); void alloc_forget_save(alloc_save_t *save) { gs_dual_memory_t *dmem = save->dmem; gs_ref_memory_t *mem = dmem->space_local; alloc_save_t *sprev; /* Iteratively combine the current level with the previous one. */ do { sprev = mem->saved; if ( sprev->id != 0 ) dmem->save_level--; if ( dmem->save_level != 0 ) { alloc_change_t *chp = mem->changes; save_set_new(&sprev->state, true); /* Concatenate the changes chains. */ if ( chp == 0 ) mem->changes = sprev->state.changes; else { while ( chp->next != 0 ) chp = chp->next; chp->next = sprev->state.changes; } file_forget_save(sprev); combine_space(mem); /* combine memory */ } else { forget_changes(mem); file_forget_save(sprev); combine_space(mem); /* combine memory */ /* This is the outermost save, which might also */ /* need to combine global VM. */ mem = dmem->space_global; if ( mem != dmem->space_local && mem->saved != 0 ) { forget_changes(mem); combine_space(mem); } set_not_in_save(dmem); break; /* must be outermost */ } } while ( sprev != save ); } /* Combine the chunks of the next outer level with those of the current one, */ /* and free the bookkeeping structures. */ private void combine_space(gs_ref_memory_t *mem) { alloc_save_t *saved = mem->saved; gs_ref_memory_t *omem = &saved->state; chunk_t *cp; chunk_t *csucc; alloc_close_chunk(mem); for ( cp = mem->cfirst; cp != 0; cp = csucc ) { csucc = cp->cnext; /* save before relinking */ if ( cp->outer == 0 ) alloc_link_chunk(cp, omem); else { chunk_t *outer = cp->outer; outer->inner_count--; if ( mem->pcc == cp ) mem->pcc = outer; /* Update the outer chunk's allocation pointers. */ outer->cbot = cp->cbot; outer->rcur = cp->rcur; outer->rtop = cp->rtop; outer->ctop = cp->ctop; outer->has_refs |= cp->has_refs; gs_free_object(mem->parent, cp, "combine_space(inner)"); } } /* Update relevant parts of allocator state. */ mem->cfirst = omem->cfirst; mem->clast = omem->clast; mem->allocated += omem->allocated; mem->gc_allocated += omem->allocated; mem->freed_lost += omem->freed_lost; mem->saved = omem->saved; mem->previous_status = omem->previous_status; { /* Concatenate free lists. */ int i; for ( i = 0; i < num_freelists; i++ ) { obj_header_t *olist = omem->freelists[i]; obj_header_t *list = mem->freelists[i]; if ( olist == 0 ) ; else if ( list == 0 ) mem->freelists[i] = olist; else { while ( *(obj_header_t **)list != 0 ) list = *(obj_header_t **)list; *(obj_header_t **)list = olist; } } } gs_free_object((gs_memory_t *)mem, saved, "combine_space(saved)"); alloc_open_chunk(mem); } /* Free the changes chain. */ private void forget_changes(gs_ref_memory_t *mem) { register alloc_change_t *chp = mem->changes; alloc_change_t *next; for ( ; chp; chp = next ) { next = chp->next; gs_free_object((gs_memory_t *)mem, chp, "forget_changes"); } mem->changes = 0; } /* ------ Internal routines ------ */ /* Set or reset the l_new attribute in every relevant slot. */ /* This includes every slot on the current change chain, */ /* and every (ref) slot allocated at this save level. */ /* Return the number of bytes of data scanned. */ private long save_set_new(gs_ref_memory_t *mem, bool to_new) { long scanned = 0; /* Handle the change chain. */ save_set_new_changes(mem, to_new); /* Handle newly allocated ref objects. */ SCAN_MEM_CHUNKS(mem, cp) { if ( cp->has_refs ) { bool has_refs = false; SCAN_CHUNK_OBJECTS(cp) DO_ALL if_debug3('U', "[U]set_new scan(0x%lx(%lu), %d)\n", (ulong)pre, size, to_new); if ( pre->o_type == &st_refs ) { /* These are refs, scan them. */ ref_packed *prp = (ref_packed *)(pre + 1); ref_packed *next = (ref_packed *)((char *)prp + size); if_debug2('U', "[U]refs 0x%lx to 0x%lx\n", (ulong)prp, (ulong)next); has_refs = true; scanned += size; /* We know that every block of refs ends with */ /* a full-size ref, so we only need the end check */ /* when we encounter one of those. */ #define rp ((ref *)prp) if ( to_new ) while ( 1 ) { if ( r_is_packed(prp) ) prp++; else { rp->tas.type_attrs |= l_new; prp += packed_per_ref; if ( prp >= next ) break; } } else while ( 1 ) { if ( r_is_packed(prp) ) prp++; else { rp->tas.type_attrs &= ~l_new; prp += packed_per_ref; if ( prp >= next ) break; } } #undef rp } else scanned += sizeof(obj_header_t); END_OBJECTS_SCAN cp->has_refs = has_refs; } } END_CHUNKS_SCAN if_debug2('u', "[u]set_new (%s) scanned %ld\n", (to_new ? "restore" : "save"), scanned); return scanned; } /* Set or reset the l_new attribute on the changes chain. */ private void save_set_new_changes(gs_ref_memory_t *mem, bool to_new) { register alloc_change_t *chp = mem->changes; register uint new = (to_new ? l_new : 0); for ( ; chp; chp = chp->next ) { ref_packed *prp = chp->where; if_debug2('U', "[U]set_new(0x%lx, %d)\n", (ulong)prp, new); if ( !r_is_packed(prp) ) #define rp ((ref *)prp) rp->tas.type_attrs = (rp->tas.type_attrs & ~l_new) + new; #undef rp } }