/* Copyright (C) 1989, 1992, 1993 Aladdin Enterprises. All rights reserved. This file is part of Aladdin Ghostscript. Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Refer to the Aladdin Ghostscript Free Public License (the "License") for full details. Every copy of Aladdin Ghostscript must include a copy of the License, normally in a plain ASCII text file named PUBLIC. The License grants you the right to copy, modify and redistribute Aladdin Ghostscript, but only under certain conditions described in the License. Among other things, the License requires that the copyright notice and this notice be preserved on all copies. */ /* gxpath.c */ /* Internal path construction routines for Ghostscript library */ #include "gx.h" #include "gserrors.h" #include "gsstruct.h" #include "gxfixed.h" #include "gzpath.h" /* These routines all assume that all points are */ /* already in device coordinates, and in fixed representation. */ /* As usual, they return either 0 or a (negative) error code. */ /* Forward references */ private subpath *path_alloc_copy(P1(gx_path *)); private int gx_path_new_subpath(P1(gx_path *)); #ifdef DEBUG void gx_print_segment(P1(const segment *)); #endif /* Macro for checking a point against a preset bounding box. */ #define outside_bbox(ppath, px, py)\ (px < ppath->bbox.p.x || px > ppath->bbox.q.x ||\ py < ppath->bbox.p.y || py > ppath->bbox.q.y) #define check_in_bbox(ppath, px, py)\ if ( outside_bbox(ppath, px, py) )\ return_error(gs_error_rangecheck) /* Structure descriptors for paths and path segment types. */ public_st_path(); private_st_segment(); private_st_line(); private_st_line_close(); private_st_curve(); private_st_subpath(); /* ------ Initialize/free paths ------ */ /* Initialize a path */ void gx_path_init(gx_path *ppath, gs_memory_t *mem) { ppath->memory = mem; gx_path_reset(ppath); } void gx_path_reset(register gx_path *ppath) { ppath->box_last = 0; ppath->position_valid = 0; ppath->first_subpath = ppath->current_subpath = 0; ppath->subpath_count = 0; ppath->curve_count = 0; ppath->subpath_open = 0; ppath->shares_segments = 0; ppath->bbox_set = 0; } /* Release the contents of a path. We do this in reverse order */ /* so as to maximize LIFO allocator behavior. */ void gx_path_release(gx_path *ppath) { segment *pseg; if ( ppath->first_subpath == 0 ) return; /* empty path */ if ( ppath->shares_segments ) return; /* segments are shared */ pseg = (segment *)ppath->current_subpath->last; while ( pseg ) { segment *prev = pseg->prev; #ifdef DEBUG if ( gs_debug_c('p') ) dprintf("[p]release"), gx_print_segment(pseg); #endif gs_free_object(ppath->memory, pseg, "gx_path_release"); pseg = prev; } ppath->first_subpath = 0; /* prevent re-release */ } /* Mark a path as shared */ void gx_path_share(gx_path *ppath) { if ( ppath->first_subpath ) ppath->shares_segments = 1; } /* ------ Incremental path building ------ */ /* Macro for opening the current subpath. */ /* ppath points to the path; psub has been set to ppath->current_subpath. */ #define path_open()\ if ( ppath->subpath_open <= 0 )\ { int code;\ if ( !ppath->position_valid )\ return_error(gs_error_nocurrentpoint);\ code = gx_path_new_subpath(ppath);\ if ( code < 0 ) return code;\ psub = ppath->current_subpath;\ } /* Macros for allocating path segments. */ /* Note that they assume that ppath points to the path, */ /* and that psub points to the current subpath. */ /* We have to split the macro into two because of limitations */ /* on the size of a single statement (sigh). */ #define p_alloc(pseg,size)\ if_debug2('A', "[p]0x%lx<%lu>\n", (ulong)(pseg), (ulong)(size)) #define path_unshare(ppath)\ if(ppath->shares_segments)\ if(!(psub = path_alloc_copy(ppath)))return_error(gs_error_VMerror) #define path_alloc_segment(pseg,ctype,pstype,stype,cname)\ path_unshare(ppath);\ if( !(pseg = gs_alloc_struct(ppath->memory, ctype, pstype, cname)) )\ return_error(gs_error_VMerror);\ p_alloc(pseg, sizeof(ctype));\ pseg->type = stype, pseg->next = 0 #define path_alloc_link(pseg)\ { segment *prev = psub->last;\ prev->next = (segment *)pseg;\ pseg->prev = prev;\ psub->last = (segment *)pseg;\ } /* Open a new subpath */ private int gx_path_new_subpath(gx_path *ppath) { subpath *psub = ppath->current_subpath; register subpath *spp; path_alloc_segment(spp, subpath, &st_subpath, s_start, "gx_path_new_subpath"); spp->last = (segment *)spp; spp->curve_count = 0; spp->is_closed = 0; spp->pt = ppath->position; ppath->subpath_open = 1; if ( !psub ) /* first subpath */ { ppath->first_subpath = spp; spp->prev = 0; } else { segment *prev = psub->last; prev->next = (segment *)spp; spp->prev = prev; } ppath->current_subpath = spp; ppath->subpath_count++; #ifdef DEBUG if ( gs_debug_c('p') ) dprintf("[p]"), gx_print_segment((const segment *)spp); #endif return 0; } /* Add a point to the current path (moveto). */ int gx_path_add_point(register gx_path *ppath, fixed x, fixed y) { if ( ppath->bbox_set ) check_in_bbox(ppath, x, y); ppath->subpath_open = -1; ppath->position_valid = 1; ppath->position.x = x; ppath->position.y = y; return 0; } /* Add a relative point to the current path (rmoveto). */ int gx_path_add_relative_point(register gx_path *ppath, fixed dx, fixed dy) { if ( !ppath->position_valid ) return_error(gs_error_nocurrentpoint); if ( ppath->bbox_set ) check_in_bbox(ppath, ppath->position.x + dx, ppath->position.y + dy); ppath->subpath_open = -1; ppath->position.x += dx; ppath->position.y += dy; return 0; } /* Set the segment point and the current point in the path. */ /* Assumes ppath points to the path. */ #define path_set_point(pseg, fx, fy)\ (pseg)->pt.x = ppath->position.x = (fx),\ (pseg)->pt.y = ppath->position.y = (fy) /* Add a line to the current path (lineto). */ int gx_path_add_line(gx_path *ppath, fixed x, fixed y) { subpath *psub = ppath->current_subpath; register line_segment *lp; if ( ppath->bbox_set ) check_in_bbox(ppath, x, y); path_open(); path_alloc_segment(lp, line_segment, &st_line, s_line, "gx_path_add_line"); path_alloc_link(lp); path_set_point(lp, x, y); #ifdef DEBUG if ( gs_debug_c('p') ) dprintf("[p]"), gx_print_segment((segment *)lp); #endif return 0; } /* Add multiple lines to the current path. */ int gx_path_add_lines(gx_path *ppath, const gs_fixed_point *ppts, int count) { subpath *psub = ppath->current_subpath; segment *prev; register line_segment *lp = 0; int i; int code = 0; if ( count <= 0 ) return 0; path_open(); path_unshare(ppath); prev = psub->last; /* We could do better than the following, but this is a start. */ /* Note that we don't make any attempt to undo partial additions */ /* if we fail partway through; this is equivalent to what would */ /* happen with multiple calls on gx_path_add_line. */ for ( i = 0; i < count; i++ ) { fixed x = ppts[i].x; fixed y = ppts[i].y; line_segment *next; if ( ppath->bbox_set && outside_bbox(ppath, x, y) ) { code = gs_note_error(gs_error_rangecheck); break; } if ( !(next = gs_alloc_struct(ppath->memory, line_segment, &st_line, "gx_path_add_lines")) ) { code = gs_note_error(gs_error_VMerror); break; } lp = next; p_alloc(lp, sizeof(line_segment)); lp->type = s_line; prev->next = (segment *)lp; lp->prev = prev; lp->pt.x = x; lp->pt.y = y; prev = (segment *)lp; #ifdef DEBUG if ( gs_debug_c('p') ) dprintf("[p]"), gx_print_segment((segment *)lp); #endif } if ( lp != 0 ) ppath->position.x = lp->pt.x, ppath->position.y = lp->pt.y, psub->last = (segment *)lp, lp->next = 0; return code; } /* Add a rectangle to the current path. */ /* This is a special case of adding a closed polygon. */ int gx_path_add_rectangle(gx_path *ppath, fixed x0, fixed y0, fixed x1, fixed y1) { gs_fixed_point pts[3]; int code; pts[0].x = x0; pts[1].x = pts[2].x = x1; pts[2].y = y0; pts[0].y = pts[1].y = y1; if ( (code = gx_path_add_point(ppath, x0, y0)) < 0 || (code = gx_path_add_lines(ppath, pts, 3)) < 0 || (code = gx_path_close_subpath(ppath)) < 0 ) return code; return 0; } /* Add a curve to the current path (curveto). */ int gx_path_add_curve(gx_path *ppath, fixed x1, fixed y1, fixed x2, fixed y2, fixed x3, fixed y3) { subpath *psub = ppath->current_subpath; register curve_segment *lp; if ( ppath->bbox_set ) { check_in_bbox(ppath, x1, y1); check_in_bbox(ppath, x2, y2); check_in_bbox(ppath, x3, y3); } path_open(); path_alloc_segment(lp, curve_segment, &st_curve, s_curve, "gx_path_add_curve"); path_alloc_link(lp); lp->p1.x = x1; lp->p1.y = y1; lp->p2.x = x2; lp->p2.y = y2; path_set_point(lp, x3, y3); psub->curve_count++; ppath->curve_count++; #ifdef DEBUG if ( gs_debug_c('p') ) dprintf("[p]"), gx_print_segment((segment *)lp); #endif return 0; } /* * Add an approximation of an arc to the current path. * Parameters are the initial and final points of the arc, * and the point at which the extended tangents meet. * We assume that the arc is less than a semicircle. * The arc may go either clockwise or counterclockwise. * The approximation is a very simple one: a single curve * whose other two control points are a fraction F of the way * to the intersection of the tangents, where * F = (4/3)(1 / (1 + sqrt(1+(d/r)^2))) * where r is the radius and d is the distance from either tangent * point to the intersection of the tangents. This produces * a curve whose center point, as well as its ends, lies on * the desired arc. * * Because F has to be computed in user space, we let the client * compute it and pass it in as an argument. */ int gx_path_add_arc(gx_path *ppath, fixed x0, fixed y0, fixed x3, fixed y3, fixed xt, fixed yt, floatp fraction) { return gx_path_add_curve(ppath, x0 + (fixed)((xt - x0) * fraction), y0 + (fixed)((yt - y0) * fraction), x3 + (fixed)((xt - x3) * fraction), y3 + (fixed)((yt - y3) * fraction), x3, y3); } /* Append a path to another path, and reset the first path. */ /* Currently this is only used to append a path to its parent */ /* (the path in the previous graphics context). */ int gx_path_add_path(gx_path *ppath, gx_path *ppfrom) { subpath *psub; path_unshare(ppfrom); path_unshare(ppath); if ( ppfrom->first_subpath ) /* i.e. ppfrom not empty */ { if ( ppath->first_subpath ) /* i.e. ppath not empty */ { subpath *psub = ppath->current_subpath; segment *pseg = psub->last; subpath *pfsub = ppfrom->first_subpath; pseg->next = (segment *)pfsub; pfsub->prev = pseg; } else ppath->first_subpath = ppfrom->first_subpath; ppath->current_subpath = ppfrom->current_subpath; ppath->subpath_count += ppfrom->subpath_count; ppath->curve_count += ppfrom->curve_count; } /* Transfer the remaining state. */ ppath->position = ppfrom->position; ppath->position_valid = ppfrom->position_valid; ppath->subpath_open = ppfrom->subpath_open; gx_path_reset(ppfrom); /* reset the source path */ return 0; } /* Close the current subpath. */ int gx_path_close_subpath(gx_path *ppath) { subpath *psub = ppath->current_subpath; register line_close_segment *lp; int code; switch ( ppath->subpath_open ) { case 0: return 0; case -1: code = gx_path_new_subpath(ppath); if ( code < 0 ) return 0; psub = ppath->current_subpath; /*case 1:*/ } path_alloc_segment(lp, line_close_segment, &st_line_close, s_line_close, "gx_path_close_subpath"); path_alloc_link(lp); path_set_point(lp, psub->pt.x, psub->pt.y); lp->sub = psub; psub->is_closed = 1; ppath->subpath_open = 0; #ifdef DEBUG if ( gs_debug_c('p') ) if ( lp != 0 ) dprintf("[p]"), gx_print_segment((segment *)lp); #endif return 0; } /* Remove the last line from the current subpath, and then close it. */ /* The Type 1 font hinting routines use this if a path ends with */ /* a line to the start followed by a closepath. */ int gx_path_pop_close_subpath(gx_path *ppath) { subpath *psub = ppath->current_subpath; segment *pseg; segment *prev; if ( psub == 0 || (pseg = psub->last) == 0 || pseg->type != s_line ) return_error(gs_error_unknownerror); prev = pseg->prev; prev->next = 0; psub->last = prev; gs_free_object(ppath->memory, pseg, "gx_path_pop_close_subpath"); return gx_path_close_subpath(ppath); } /* ------ Internal routines ------ */ /* Copy the current path, because it was shared. */ /* Return a pointer to the current subpath, or 0. */ private subpath * path_alloc_copy(gx_path *ppath) { gx_path path_new; int code; code = gx_path_copy(ppath, &path_new, 1); if ( code < 0 ) return 0; *ppath = path_new; ppath->shares_segments = 0; return ppath->current_subpath; } /* ------ Debugging printout ------ */ #ifdef DEBUG /* Print out a path with a label */ void gx_dump_path(const gx_path *ppath, const char *tag) { dprintf2("[p]Path 0x%lx %s:\n", (ulong)ppath, tag); gx_path_print(ppath); } /* Print a path */ void gx_path_print(const gx_path *ppath) { const segment *pseg = (const segment *)ppath->first_subpath; dprintf4(" subpaths=%d, curves=%d, point=(%f,%f)\n", ppath->subpath_count, ppath->curve_count, fixed2float(ppath->position.x), fixed2float(ppath->position.y)); dprintf5(" box=(%f,%f),(%f,%f) last=0x%lx\n", fixed2float(ppath->bbox.p.x), fixed2float(ppath->bbox.p.y), fixed2float(ppath->bbox.q.x), fixed2float(ppath->bbox.q.y), (ulong)ppath->box_last); while ( pseg ) { gx_print_segment(pseg); pseg = pseg->next; } } void gx_print_segment(const segment *pseg) { char out[80]; sprintf(out, " 0x%lx<0x%lx,0x%lx>: %%s (%6g,%6g) ", (ulong)pseg, (ulong)pseg->prev, (ulong)pseg->next, fixed2float(pseg->pt.x), fixed2float(pseg->pt.y)); switch ( pseg->type ) { case s_start: #define psub ((const subpath *)pseg) dprintf1(out, "start"); dprintf2("#curves=%d last=0x%lx", psub->curve_count, (ulong)psub->last); #undef psub break; case s_curve: dprintf1(out, "curve"); #define pcur ((const curve_segment *)pseg) dprintf4("\n\tp1=(%f,%f) p2=(%f,%f)", fixed2float(pcur->p1.x), fixed2float(pcur->p1.y), fixed2float(pcur->p2.x), fixed2float(pcur->p2.y)); #undef pcur break; case s_line: dprintf1(out, "line"); break; case s_line_close: #define plc ((const line_close_segment *)pseg) dprintf1(out, "close"); dprintf1(" 0x%lx", (ulong)(plc->sub)); #undef plc break; default: { char t[20]; sprintf(t, "type 0x%x", pseg->type); dprintf1(out, t); } } dputc('\n'); } #endif /* DEBUG */