/* Copyright (C) 1992, 1993, 1994 Aladdin Enterprises. All rights reserved. This file is part of Aladdin Ghostscript. Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Refer to the Aladdin Ghostscript Free Public License (the "License") for full details. Every copy of Aladdin Ghostscript must include a copy of the License, normally in a plain ASCII text file named PUBLIC. The License grants you the right to copy, modify and redistribute Aladdin Ghostscript, but only under certain conditions described in the License. Among other things, the License requires that the copyright notice and this notice be preserved on all copies. */ /* gxcmap.c */ /* Color mapping for Ghostscript */ #include "gx.h" #include "gserrors.h" #include "gscspace.h" #include "gsccolor.h" #include "gxfarith.h" #include "gxfrac.h" #include "gxdcconv.h" #include "gxdevice.h" #include "gxdither.h" #include "gxcmap.h" #include "gxlum.h" #include "gzstate.h" /* Convert a frac to a gx_color_value. */ /* This is needed because map_rgb_color still uses gx_color_value. */ #if arch_sizeof_gx_color_value == arch_sizeof_short /* better be true! */ # define frac2cv(fr) frac2ushort(fr) # define cv2frac(cv) ushort2frac(cv) #endif /* Structure descriptor */ public_st_device_color(); #define cptr ((gx_device_color *)vptr) private ENUM_PTRS_BEGIN(device_color_enum_ptrs) { struct_proc_enum_ptrs((*proc)) = cptr->type->enum_ptrs; if ( proc == 0 ) return 0; return (*proc)(vptr, size, index, pep); } ENUM_PTRS_END private RELOC_PTRS_BEGIN(device_color_reloc_ptrs) { struct_proc_reloc_ptrs((*proc)) = cptr->type->reloc_ptrs; if ( proc != 0 ) (*proc)(vptr, size, gcst); } RELOC_PTRS_END #undef cptr /* ------ Trace device mapping procedures ------ */ /* If DEBUG is defined, these procedures substitute for direct calls */ /* on the device map_{rgb,cmyk}_color procedures. */ gx_color_index gx_proc_map_rgb_color(gx_device *dev, gx_color_value vr, gx_color_value vg, gx_color_value vb) { gx_color_index cindex = (*dev_proc(dev, map_rgb_color))(dev, vr, vg, vb); if_debug5('C', "%s [C]RGB %u,%u,%u -> color 0x%lx\n", dev->dname, (uint)vr, (uint)vg, (uint)vb, (ulong)cindex); return cindex; } gx_color_index gx_proc_map_rgb_alpha_color(gx_device *dev, gx_color_value vr, gx_color_value vg, gx_color_value vb, gx_color_value va) { gx_color_index cindex = (*dev_proc(dev, map_rgb_alpha_color))(dev, vr, vg, vb, va); if_debug6('C', "[C]%s RGBA %u,%u,%u,%u -> color 0x%lx\n", dev->dname, (uint)vr, (uint)vg, (uint)vb, (uint)va, (ulong)cindex); return cindex; } gx_color_index gx_proc_map_cmyk_color(gx_device *dev, gx_color_value vc, gx_color_value vm, gx_color_value vy, gx_color_value vk) { gx_color_index cindex = (*dev_proc(dev, map_cmyk_color))(dev, vc, vm, vy, vk); if_debug6('C', "[C]%s CMYK %u,%u,%u,%u -> color 0x%lx\n", dev->dname, (uint)vc, (uint)vm, (uint)vy, (uint)vk, (ulong)cindex); return cindex; } /* ------ Device color rendering ------ */ private cmap_proc_gray(cmap_gray_halftoned); private cmap_proc_gray(cmap_gray_direct); private cmap_proc_gray(cmap_gray_to_rgb); private cmap_proc_gray(cmap_gray_to_cmyk); #define cmap_rgb_halftoned cmap_rgb_direct private cmap_proc_rgb(cmap_rgb_direct); private cmap_proc_rgb(cmap_rgb_to_gray); private cmap_proc_rgb(cmap_rgb_to_cmyk); #define cmap_cmyk_halftoned cmap_cmyk_direct private cmap_proc_cmyk(cmap_cmyk_direct); private cmap_proc_cmyk(cmap_cmyk_to_gray); private cmap_proc_cmyk(cmap_cmyk_to_rgb); private const gx_color_map_procs cmap_gray_few = { cmap_gray_halftoned, cmap_rgb_to_gray, cmap_cmyk_to_gray }, cmap_gray_many = { cmap_gray_direct, cmap_rgb_to_gray, cmap_cmyk_to_gray }, cmap_rgb_few = { cmap_gray_to_rgb, cmap_rgb_halftoned, cmap_cmyk_to_rgb }, cmap_rgb_many = { cmap_gray_to_rgb, cmap_rgb_direct, cmap_cmyk_to_rgb }, cmap_cmyk_few = { cmap_gray_to_cmyk, cmap_rgb_to_cmyk, cmap_cmyk_halftoned }, cmap_cmyk_many = { cmap_gray_to_cmyk, cmap_rgb_to_cmyk, cmap_cmyk_direct }; const gx_color_map_procs *cmap_procs_default = &cmap_gray_many; private const gx_color_map_procs _ds *cmap_few[] = { 0, &cmap_gray_few, 0, &cmap_rgb_few, &cmap_cmyk_few }; private const gx_color_map_procs _ds *cmap_many[] = { 0, &cmap_gray_many, 0, &cmap_rgb_many, &cmap_cmyk_many }; /* Set the color mapping procedures in the graphics state. */ void gx_set_cmap_procs(gs_state *pgs) { gx_device *dev = gs_currentdevice_inline(pgs); pgs->cmap_procs = ((gx_device_has_color(dev) ? dev->color_info.max_color : dev->color_info.max_gray) >= 31 ? cmap_many : cmap_few) [dev->color_info.num_components]; } /* Remap the color in the graphics state. */ int gx_remap_color(gs_state *pgs) { const gs_color_space *pcs = pgs->color_space; return (*pcs->type->remap_color)(pgs->ccolor, pcs, pgs->dev_color, pgs); } /* Indicate that a color space has no underlying concrete space. */ const gs_color_space * gx_no_concrete_space(const gs_color_space *pcs, const gs_state *pgs) { return NULL; } /* Indicate that a color space is concrete. */ const gs_color_space * gx_same_concrete_space(const gs_color_space *pcs, const gs_state *pgs) { return pcs; } /* Indicate that a color cannot be concretized. */ int gx_no_concretize_color(const gs_client_color *pcc, const gs_color_space *pcs, frac *pconc, const gs_state *pgs) { return_error(gs_error_rangecheck); } /* By default, remap a color by concretizing it and then */ /* remapping the concrete color. */ int gx_default_remap_color(const gs_client_color *pcc, const gs_color_space *pcs, gx_device_color *pdc, const gs_state *pgs) { frac conc[4]; const gs_color_space *pconcs; int code = (*pcs->type->concretize_color)(pcc, pcs, conc, pgs); if ( code < 0 ) return code; pconcs = cs_concrete_space(pcs, pgs); return (*pconcs->type->remap_concrete_color)(conc, pdc, pgs); } /* Color remappers for the standard color spaces. */ /* Note that we use D... instead of Device... in some places because */ /* gcc under VMS only retains 23 characters of procedure names. */ #define unit_frac(v, ftemp)\ (ftemp = (v),\ (is_fneg(ftemp) ? frac_0 : is_fge1(ftemp) ? frac_1 : float2frac(ftemp))) /* DeviceGray */ int gx_concretize_DeviceGray(const gs_client_color *pc, const gs_color_space *pcs, frac *pconc, const gs_state *pgs) { float ftemp; pconc[0] = unit_frac(pc->paint.values[0], ftemp); return 0; } int gx_remap_concrete_DGray(const frac *pconc, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_gray) (pconc[0], pdc, pgs); return 0; } int gx_remap_DeviceGray(const gs_client_color *pc, const gs_color_space *pcs, gx_device_color *pdc, const gs_state *pgs) { float ftemp; (*pgs->cmap_procs->map_gray) (unit_frac(pc->paint.values[0], ftemp), pdc, pgs); return 0; } /* DeviceRGB */ int gx_concretize_DeviceRGB(const gs_client_color *pc, const gs_color_space *pcs, frac *pconc, const gs_state *pgs) { float ftemp; pconc[0] = unit_frac(pc->paint.values[0], ftemp); pconc[1] = unit_frac(pc->paint.values[1], ftemp); pconc[2] = unit_frac(pc->paint.values[2], ftemp); return 0; } int gx_remap_concrete_DRGB(const frac *pconc, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_rgb) (pconc[0], pconc[1], pconc[2], pdc, pgs); return 0; } int gx_remap_DeviceRGB(const gs_client_color *pc, const gs_color_space *pcs, gx_device_color *pdc, const gs_state *pgs) { float ft0, ft1, ft2; (*pgs->cmap_procs->map_rgb) (unit_frac(pc->paint.values[0], ft0), unit_frac(pc->paint.values[1], ft1), unit_frac(pc->paint.values[2], ft2), pdc, pgs); return 0; } /* DeviceCMYK */ int gx_concretize_DeviceCMYK(const gs_client_color *pc, const gs_color_space *pcs, frac *pconc, const gs_state *pgs) { float ftemp; pconc[0] = unit_frac(pc->paint.values[0], ftemp); pconc[1] = unit_frac(pc->paint.values[1], ftemp); pconc[2] = unit_frac(pc->paint.values[2], ftemp); pconc[3] = unit_frac(pc->paint.values[3], ftemp); return 0; } int gx_remap_concrete_DCMYK(const frac *pconc, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_cmyk) (pconc[0], pconc[1], pconc[2], pconc[3], pdc, pgs); return 0; } int gx_remap_DeviceCMYK(const gs_client_color *pc, const gs_color_space *pcs, gx_device_color *pdc, const gs_state *pgs) { float ft0, ft1, ft2, ft3; (*pgs->cmap_procs->map_cmyk) (unit_frac(pc->paint.values[0], ft0), unit_frac(pc->paint.values[1], ft1), unit_frac(pc->paint.values[2], ft2), unit_frac(pc->paint.values[3], ft3), pdc, pgs); return 0; } /* Render Gray color. */ private void cmap_gray_direct(frac gray, gx_device_color *pdc, const gs_state *pgs) { gx_device *dev = gs_currentdevice_inline(pgs); frac mgray = gx_map_color_frac(pgs, gray, effective_transfer.colored.gray); gx_color_value cv_gray = frac2cv(mgray); gx_color_index color = (pgs->alpha == gx_max_color_value ? gx_map_rgb_color(dev, cv_gray, cv_gray, cv_gray) : gx_map_rgb_alpha_color(dev, cv_gray, cv_gray, cv_gray, pgs->alpha)); if ( color == gx_no_color_index ) { gx_render_gray(mgray, pdc, pgs); return; } color_set_pure(pdc, color); } private void cmap_gray_halftoned(frac gray, gx_device_color *pdc, const gs_state *pgs) { gx_render_gray(gx_map_color_frac(pgs, gray, effective_transfer.colored.gray), pdc, pgs); } private void cmap_gray_to_rgb(frac gray, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_rgb)(gray, gray, gray, pdc, pgs); } private void cmap_gray_to_cmyk(frac gray, gx_device_color *pdc, const gs_state *pgs) { /* * Per the last paragraph of section 6.3 (p. 309) of the * PostScript Language Reference Manual, 2nd Edition, * we must bypass the C, M, and Y transfer functions in this case. */ gx_device *dev = gs_currentdevice_inline(pgs); frac mgray = gx_map_color_frac(pgs, gray, effective_transfer.colored.gray); /* We make a test for direct vs. halftoned, rather than */ /* duplicating most of the code of this procedure. */ if ( dev->color_info.max_color >= 31 ) { frac mblack = frac_1 - mgray; gx_color_index color = gx_map_cmyk_color(dev, frac2cv(frac_0), frac2cv(frac_0), frac2cv(frac_0), frac2cv(mblack)); if ( color != gx_no_color_index ) { color_set_pure(pdc, color); return; } } gx_render_gray(mgray, pdc, pgs); } /* Render RGB color. */ /* * This code should test r == g and g == b and then use the gray * rendering procedures. The Adobe documentation allows this: * conversion between color spaces occurs before the transfer function * and halftoning. However, output from FrameMaker (mis)uses the * transfer function to provide the equivalent of indexed color; * it requires the color components to be passed through unchanged. * For this reason, we have to make the check after the transfer * function rather than before. */ private void cmap_rgb_direct(frac r, frac g, frac b, gx_device_color *pdc, const gs_state *pgs) { gx_device *dev = gs_currentdevice_inline(pgs); frac mred = gx_map_color_frac(pgs, r, effective_transfer.colored.red); frac mgreen = gx_map_color_frac(pgs, g, effective_transfer.colored.green); frac mblue = gx_map_color_frac(pgs, b, effective_transfer.colored.blue); /* We make a test for direct vs. halftoned, rather than */ /* duplicating most of the code of this procedure. */ if ( dev->color_info.max_color >= 31 ) { gx_color_index color = (pgs->alpha == gx_max_color_value ? gx_map_rgb_color(dev, frac2cv(mred), frac2cv(mgreen), frac2cv(mblue)) : gx_map_rgb_alpha_color(dev, frac2cv(mred), frac2cv(mgreen), frac2cv(mblue), pgs->alpha)); if ( color != gx_no_color_index ) { color_set_pure(pdc, color); return; } } if ( mred == mgreen && mred == mblue ) /* gray shade */ gx_render_gray(mred, pdc, pgs); else gx_render_rgb(mred, mgreen, mblue, pdc, pgs); } private void cmap_rgb_to_gray(frac r, frac g, frac b, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_gray)(color_rgb_to_gray(r, g, b, pgs), pdc, pgs); } private void cmap_rgb_to_cmyk(frac r, frac g, frac b, gx_device_color *pdc, const gs_state *pgs) { frac cmyk[4]; color_rgb_to_cmyk(r, g, b, pgs, cmyk); (*pgs->cmap_procs->map_cmyk)(cmyk[0], cmyk[1], cmyk[2], cmyk[3], pdc, pgs); } /* Render CMYK color. */ private void cmap_cmyk_direct(frac c, frac m, frac y, frac k, gx_device_color *pdc, const gs_state *pgs) { gx_device *dev = gs_currentdevice_inline(pgs); frac mcyan = frac_1 - gx_map_color_frac(pgs, frac_1 - c, effective_transfer.colored.red); frac mmagenta = frac_1 - gx_map_color_frac(pgs, frac_1 - m, effective_transfer.colored.green); frac myellow = frac_1 - gx_map_color_frac(pgs, frac_1 - y, effective_transfer.colored.blue); frac mblack = frac_1 - gx_map_color_frac(pgs, frac_1 - k, effective_transfer.colored.gray); /* We make a test for direct vs. halftoned, rather than */ /* duplicating most of the code of this procedure. */ if ( dev->color_info.max_color >= 31 ) { gx_color_index color = gx_map_cmyk_color(dev, frac2cv(mcyan), frac2cv(mmagenta), frac2cv(myellow), frac2cv(mblack)); if ( color != gx_no_color_index ) { color_set_pure(pdc, color); return; } } /* Don't convert colors with C = M = Y to gray shades: */ /* on a CMYK device, this may produce quite different output. */ gx_render_cmyk(mcyan, mmagenta, myellow, mblack, pdc, pgs); } private void cmap_cmyk_to_gray(frac c, frac m, frac y, frac k, gx_device_color *pdc, const gs_state *pgs) { (*pgs->cmap_procs->map_gray)(color_cmyk_to_gray(c, m, y, k, pgs), pdc, pgs); } private void cmap_cmyk_to_rgb(frac c, frac m, frac y, frac k, gx_device_color *pdc, const gs_state *pgs) { frac rgb[3]; color_cmyk_to_rgb(c, m, y, k, pgs, rgb); (*pgs->cmap_procs->map_rgb)(rgb[0], rgb[1], rgb[2], pdc, pgs); } /* ------ Transfer function mapping ------ */ /* Map a color fraction through a transfer map. */ frac gx_color_frac_map(frac cv, const frac *values) { #define cp_frac_bits (frac_bits - log2_transfer_map_size) int cmi = frac2bits_floor(cv, log2_transfer_map_size); frac mv = values[cmi]; int rem, mdv; /* Interpolate between two adjacent values if needed. */ rem = cv - bits2frac(cmi, log2_transfer_map_size); if ( rem == 0 ) return mv; mdv = values[cmi + 1] - mv; #if arch_ints_are_short /* Only use long multiplication if necessary. */ if ( mdv < -1 << (16 - cp_frac_bits) || mdv > 1 << (16 - cp_frac_bits) ) return mv + (uint)(((ulong)rem * mdv) >> cp_frac_bits); #endif return mv + ((rem * mdv) >> cp_frac_bits); #undef cp_frac_bits } /* ------ Default device color mapping ------ */ /* RGB mapping for black-and-white devices */ gx_color_index gx_default_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g, gx_color_value b) { /* Map values >= 1/2 to 1, < 1/2 to 0. */ return ((r | g | b) > gx_max_color_value / 2 ? (gx_color_index)1 : (gx_color_index)0); } int gx_default_map_color_rgb(gx_device *dev, gx_color_index color, gx_color_value prgb[3]) { /* Map 1 to max_value, 0 to 0. */ prgb[0] = prgb[1] = prgb[2] = -(gx_color_value)color; return 0; } /* RGB mapping for gray-scale devices */ gx_color_index gx_default_gray_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g, gx_color_value b) { /* We round the value rather than truncating it. */ gx_color_value gray = ((r * (ulong)lum_red_weight) + (g * (ulong)lum_green_weight) + (b * (ulong)lum_blue_weight) + (lum_all_weights / 2)) / lum_all_weights * dev->color_info.max_gray / gx_max_color_value; return gray; } int gx_default_gray_map_color_rgb(gx_device *dev, gx_color_index color, gx_color_value prgb[3]) { gx_color_value gray = color * gx_max_color_value / dev->color_info.max_gray; prgb[0] = gray; prgb[1] = gray; prgb[2] = gray; return 0; } /* RGB mapping for 24-bit true (RGB) color devices */ gx_color_index gx_default_rgb_map_rgb_color(gx_device *dev, gx_color_value r, gx_color_value g, gx_color_value b) { if ( dev->color_info.depth == 24 ) return gx_color_value_to_byte(b) + ((uint)gx_color_value_to_byte(g) << 8) + ((ulong)gx_color_value_to_byte(r) << 16); else { uint bits_per_color = dev->color_info.depth / 3; ulong max_value = (1 << bits_per_color) - 1; return ((r * max_value / gx_max_color_value) << (bits_per_color * 2)) + ((g * max_value / gx_max_color_value) << (bits_per_color)) + (b * max_value / gx_max_color_value); } } /* Map a color index to a r-g-b color. */ int gx_default_rgb_map_color_rgb(gx_device *dev, gx_color_index color, gx_color_value prgb[3]) { if ( dev->color_info.depth == 24 ) { prgb[0] = gx_color_value_from_byte(color >> 16); prgb[1] = gx_color_value_from_byte((color >> 8) & 0xff); prgb[2] = gx_color_value_from_byte(color & 0xff); } else { uint bits_per_color = dev->color_info.depth / 3; uint color_mask = (1 << bits_per_color) - 1; prgb[0] = ((color >> (bits_per_color * 2)) & color_mask) * (ulong)gx_max_color_value / color_mask; prgb[1] = ((color >> (bits_per_color)) & color_mask) * (ulong)gx_max_color_value / color_mask; prgb[2] = (color & color_mask) * (ulong)gx_max_color_value / color_mask; } return 0; } /* CMYK mapping for RGB devices (should never be called!) */ gx_color_index gx_default_map_cmyk_color(gx_device *dev, gx_color_value c, gx_color_value m, gx_color_value y, gx_color_value k) { /* Convert to RGB */ frac rgb[3]; color_cmyk_to_rgb(cv2frac(c), cv2frac(m), cv2frac(y), cv2frac(k), NULL, rgb); return gx_map_rgb_color(dev, frac2cv(rgb[0]), frac2cv(rgb[1]), frac2cv(rgb[2])); } /* CMYK mapping for CMYK devices */ gx_color_index gx_default_cmyk_map_cmyk_color(gx_device *dev, gx_color_value c, gx_color_value m, gx_color_value y, gx_color_value k) { return (gx_color_value_to_byte(k) + ((uint)gx_color_value_to_byte(y) << 8)) + ((ulong)(gx_color_value_to_byte(m) + ((uint)gx_color_value_to_byte(c) << 8)) << 16); } /* Default mapping from RGB-alpha to RGB. */ gx_color_index gx_default_map_rgb_alpha_color(gx_device *dev, gx_color_value r, gx_color_value g, gx_color_value b, gx_color_value alpha) { return gx_map_rgb_color(dev, r, g, b); }