/* Copyright (C) 1989, 1992, 1994 Aladdin Enterprises. All rights reserved. This file is part of Aladdin Ghostscript. Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or distributor accepts any responsibility for the consequences of using it, or for whether it serves any particular purpose or works at all, unless he or she says so in writing. Refer to the Aladdin Ghostscript Free Public License (the "License") for full details. Every copy of Aladdin Ghostscript must include a copy of the License, normally in a plain ASCII text file named PUBLIC. The License grants you the right to copy, modify and redistribute Aladdin Ghostscript, but only under certain conditions described in the License. Among other things, the License requires that the copyright notice and this notice be preserved on all copies. */ /* gdevm1.c */ /* Monobit "memory" (stored bitmap) device */ #include "memory_.h" #include "gx.h" #include "gxdevice.h" #include "gxdevmem.h" /* semi-public definitions */ #include "gdevmem.h" /* private definitions */ /* We went to a lot of trouble to optimize mem_mono_tile_rectangle. */ /* It has a substantial effect on the total time at high resolutions. */ /* However, it takes quite a lot of code, so we omit it on 16-bit systems. */ #define OPTIMIZE_TILE (arch_sizeof_int > 2) /* Procedures */ private dev_proc_copy_mono(mem_mono_copy_mono); private dev_proc_fill_rectangle(mem_mono_fill_rectangle); #if OPTIMIZE_TILE private dev_proc_tile_rectangle(mem_mono_tile_rectangle); #else # define mem_mono_tile_rectangle gx_default_tile_rectangle #endif /* The device descriptor. */ /* The instance is public. */ const gx_device_memory far_data mem_mono_device = mem_full_device("image(mono)", 0, 1, mem_open, gx_default_map_rgb_color, gx_default_map_color_rgb, mem_mono_copy_mono, gx_default_copy_color, mem_mono_fill_rectangle, mem_mono_tile_rectangle, mem_get_bits, gx_default_map_cmyk_color); /* Fill a rectangle with a color. */ private int mem_mono_fill_rectangle(gx_device *dev, int x, int y, int w, int h, gx_color_index color) { fit_fill(dev, x, y, w, h); bits_fill_rectangle(scan_line_base(mdev, y), x, mdev->raster, -(mono_fill_chunk)(((byte)color ^ mdev->invert) & 1), w, h); return 0; } /* Convert x coordinate to byte offset in scan line. */ #define x_to_byte(x) ((x) >> 3) /* Copy a monochrome bitmap. */ #undef mono_masks #define mono_masks mono_copy_masks /* Fetch a chunk from the source. */ /* The source data are always stored big-endian. */ /* Note that the macros always cast cptr, */ /* so it doesn't matter what the type of cptr is. */ /* cshift = chunk_bits - shift. */ #undef chunk #if arch_is_big_endian # define chunk uint # define cfetch_right(cptr, shift, cshift)\ (cfetch_aligned(cptr) >> shift) # define cfetch_left(cptr, shift, cshift)\ (cfetch_aligned(cptr) << shift) /* Fetch a chunk that straddles a chunk boundary. */ # define cfetch2(cptr, cskew, skew)\ (cfetch_left(cptr, cskew, skew) +\ cfetch_right((chunk *)(cptr) + 1, skew, cskew)) #else /* little-endian */ # define chunk bits16 private const bits16 right_masks2[9] = { 0xffff, 0x7f7f, 0x3f3f, 0x1f1f, 0x0f0f, 0x0707, 0x0303, 0x0101, 0x0000 }; private const bits16 left_masks2[9] = { 0xffff, 0xfefe, 0xfcfc, 0xf8f8, 0xf0f0, 0xe0e0, 0xc0c0, 0x8080, 0x0000 }; # define ccont(cptr, off) (((chunk *)(cptr))[off]) # define cfetch_right(cptr, shift, cshift)\ ((shift) < 8 ?\ ((ccont(cptr, 0) >> (shift)) & right_masks2[shift]) +\ (ccont(cptr, 0) << (cshift)) :\ ((chunk)*(byte *)(cptr) << (cshift)) & 0xff00) # define cfetch_left(cptr, shift, cshift)\ ((shift) < 8 ?\ ((ccont(cptr, 0) << (shift)) & left_masks2[shift]) +\ (ccont(cptr, 0) >> (cshift)) :\ ((ccont(cptr, 0) & 0xff00) >> (cshift)) & 0xff) /* Fetch a chunk that straddles a chunk boundary. */ /* We can avoid testing the shift amount twice */ /* by expanding the cfetch_left/right macros in-line. */ # define cfetch2(cptr, cskew, skew)\ ((cskew) < 8 ?\ ((ccont(cptr, 0) << (cskew)) & left_masks2[cskew]) +\ (ccont(cptr, 0) >> (skew)) +\ (((chunk)(((byte *)(cptr))[2]) << (cskew)) & 0xff00) :\ (((ccont(cptr, 0) & 0xff00) >> (skew)) & 0xff) +\ ((ccont(cptr, 1) >> (skew)) & right_masks2[skew]) +\ (ccont(cptr, 1) << (cskew))) #endif /* Since source and destination are both always big-endian, */ /* fetching an aligned chunk never requires byte swapping. */ # define cfetch_aligned(cptr)\ (*(chunk *)(cptr)) /* copy_function and copy_shift get added together for dispatch */ typedef enum { copy_or = 0, copy_store, copy_and, copy_funny } copy_function; /* copy_right/left is not an enum, because compilers complain about */ /* an enumeration clash when these are added to a copy_function. */ #define copy_right ((copy_function)0) #define copy_left ((copy_function)4) typedef struct { short invert; ushort op; /* copy_function */ } copy_mode; /* Map from to copy_mode. */ #define cm(i,op) { i, (ushort)op } private copy_mode copy_modes[9*2] = { cm(-1, copy_funny), /* NN */ cm(-1, copy_and), /* N0 */ cm(0, copy_or), /* N1 */ cm(0, copy_and), /* 0N */ cm(0, copy_funny), /* 00 */ cm(0, copy_store), /* 01 */ cm(-1, copy_or), /* 1N */ cm(-1, copy_store), /* 10 */ cm(0, copy_funny), /* 11 */ cm(-1, copy_funny), /* NNi */ cm(0, copy_or), /* N1i */ cm(-1, copy_and), /* N0i */ cm(-1, copy_or), /* 1Ni */ cm(0, copy_funny), /* 11i */ cm(-1, copy_store), /* 10i */ cm(0, copy_and), /* 0Ni */ cm(0, copy_store), /* 01i */ cm(0, copy_funny) /* 00i */ }; private int mem_mono_copy_mono(gx_device *dev, const byte *base, int sourcex, int sraster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { register const byte *bptr; /* actually chunk * */ int dbit, wleft; uint mask; copy_mode mode; #define function (copy_function)(mode.op) declare_scan_ptr_as(dbptr, byte *); #define optr ((chunk *)dbptr) register int skew; register uint invert; fit_copy(dev, base, sourcex, sraster, id, x, y, w, h); #if gx_no_color_index_value != -1 /* hokey! */ if ( zero == gx_no_color_index ) zero = -1; if ( one == gx_no_color_index ) one = -1; #endif #define izero (int)zero #define ione (int)one mode = copy_modes[(mdev->invert & 9) + izero + izero + izero + ione + 4]; #undef izero #undef ione invert = (uint)(int)mode.invert; /* load register */ setup_rect_as(dbptr, byte *); bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3); dbit = x & chunk_align_bit_mask; skew = dbit - (sourcex & chunk_align_bit_mask); /* Macros for writing partial chunks. */ /* The destination pointer is always named optr, */ /* and must be declared as chunk *. */ /* cinvert may be temporarily redefined. */ #define cinvert(bits) ((bits) ^ invert) #define write_or_masked(bits, mask, off)\ optr[off] |= (cinvert(bits) & mask) #define write_store_masked(bits, mask, off)\ optr[off] = ((optr[off] & ~mask) | (cinvert(bits) & mask)) #define write_and_masked(bits, mask, off)\ optr[off] &= (cinvert(bits) | ~mask) /* Macros for writing full chunks. */ #define write_or(bits) *optr |= cinvert(bits) #define write_store(bits) *optr = cinvert(bits) #define write_and(bits) *optr &= cinvert(bits) /* Macro for incrementing to next chunk. */ #define next_x_chunk\ bptr += chunk_bytes; dbptr += chunk_bytes /* Common macro for the end of each scan line. */ #define end_y_loop(sdelta, ddelta)\ if ( --h == 0 ) break;\ bptr += sdelta; dbptr += ddelta if ( (wleft = w + dbit - chunk_bits) <= 0 ) { /* The entire operation fits in one (destination) chunk. */ set_mono_thin_mask(mask, w, dbit); #define write_single(wr_op, src)\ for ( ; ; )\ { wr_op(src, mask, 0);\ end_y_loop(sraster, draster);\ } #define write1_loop(src)\ switch ( function ) {\ case copy_or: write_single(write_or_masked, src); break;\ case copy_store: write_single(write_store_masked, src); break;\ case copy_and: write_single(write_and_masked, src); break;\ default: goto funny;\ } if ( skew >= 0 ) /* single -> single, right/no shift */ { if ( skew == 0 ) /* no shift */ { write1_loop(cfetch_aligned(bptr)); } else /* right shift */ { int cskew = chunk_bits - skew; write1_loop(cfetch_right(bptr, skew, cskew)); } } else if ( wleft <= skew ) /* single -> single, left shift */ { int cskew = chunk_bits + skew; skew = -skew; write1_loop(cfetch_left(bptr, skew, cskew)); } else /* double -> single */ { int cskew = -skew; skew += chunk_bits; write1_loop(cfetch2(bptr, cskew, skew)); } #undef write1_loop #undef write_single } else if ( wleft <= skew ) { /* 1 source chunk -> 2 destination chunks. */ /* This is an important special case for */ /* both characters and halftone tiles. */ uint rmask; int cskew = chunk_bits - skew; set_mono_left_mask(mask, dbit); set_mono_right_mask(rmask, wleft); #undef cinvert #define cinvert(bits) (bits) /* pre-inverted here */ #if arch_is_big_endian /* no byte swapping */ # define write_1to2(wr_op)\ for ( ; ; )\ { register uint bits = cfetch_aligned(bptr) ^ invert;\ wr_op(bits >> skew, mask, 0);\ wr_op(bits << cskew, rmask, 1);\ end_y_loop(sraster, draster);\ } #else /* byte swapping */ # define write_1to2(wr_op)\ for ( ; ; )\ { wr_op(cfetch_right(bptr, skew, cskew) ^ invert, mask, 0);\ wr_op(cfetch_left(bptr, cskew, skew) ^ invert, rmask, 1);\ end_y_loop(sraster, draster);\ } #endif switch ( function ) { case copy_or: write_1to2(write_or_masked); break; case copy_store: write_1to2(write_store_masked); break; case copy_and: write_1to2(write_and_masked); break; default: goto funny; } #undef cinvert #define cinvert(bits) ((bits) ^ invert) #undef write_1to2 } else { /* More than one source chunk and more than one */ /* destination chunk are involved. */ uint rmask; int words = (wleft & ~chunk_bit_mask) >> 3; uint sskip = sraster - words; uint dskip = draster - words; register uint bits; set_mono_left_mask(mask, dbit); set_mono_right_mask(rmask, wleft & chunk_bit_mask); if ( skew == 0 ) /* optimize the aligned case */ { #define write_aligned(wr_op, wr_op_masked)\ for ( ; ; )\ { int count = wleft;\ /* Do first partial chunk. */\ wr_op_masked(cfetch_aligned(bptr), mask, 0);\ /* Do full chunks. */\ while ( (count -= chunk_bits) >= 0 )\ { next_x_chunk; wr_op(cfetch_aligned(bptr)); }\ /* Do last chunk */\ if ( count > -chunk_bits )\ { wr_op_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1); }\ end_y_loop(sskip, dskip);\ } switch ( function ) { case copy_or: write_aligned(write_or, write_or_masked); break; case copy_store: write_aligned(write_store, write_store_masked); break; case copy_and: write_aligned(write_and, write_and_masked); break; default: goto funny; } #undef write_aligned } else /* not aligned */ { int ccase = (skew >= 0 ? copy_right : ((bptr += chunk_bytes), copy_left)) + (int)function; int cskew = -skew & chunk_bit_mask; skew &= chunk_bit_mask; for ( ; ; ) { int count = wleft; #define prefetch_right\ bits = cfetch_right(bptr, skew, cskew) #define prefetch_left\ bits = cfetch2(bptr - chunk_bytes, cskew, skew) #define write_unaligned(wr_op, wr_op_masked)\ wr_op_masked(bits, mask, 0);\ /* Do full chunks. */\ while ( count >= chunk_bits )\ { bits = cfetch2(bptr, cskew, skew);\ next_x_chunk; wr_op(bits); count -= chunk_bits;\ }\ /* Do last chunk */\ if ( count > 0 )\ { bits = cfetch_left(bptr, cskew, skew);\ if ( count > skew ) bits += cfetch_right(bptr + chunk_bytes, skew, cskew);\ wr_op_masked(bits, rmask, 1);\ } switch ( ccase ) { case copy_or + copy_left: prefetch_left; goto uor; case copy_or + copy_right: prefetch_right; uor: write_unaligned(write_or, write_or_masked); break; case copy_store + copy_left: prefetch_left; goto ustore; case copy_store + copy_right: prefetch_right; ustore: write_unaligned(write_store, write_store_masked); break; case copy_and + copy_left: prefetch_left; goto uand; case copy_and + copy_right: prefetch_right; uand: write_unaligned(write_and, write_and_masked); break; default: goto funny; } end_y_loop(sskip, dskip); #undef write_unaligned #undef prefetch_left #undef prefetch_right } } } #undef end_y_loop #undef next_x_chunk return 0; /* Handle the funny cases that aren't supposed to happen. */ funny: return (invert ? -1 : mem_mono_fill_rectangle(dev, x, y, w, h, zero)); #undef optr } #if OPTIMIZE_TILE /**************** ****************/ /* Tile with a monochrome halftone. */ /* This is a performance bottleneck for monochrome devices, */ /* so we re-implement it, even though it takes a lot of code. */ private int mem_mono_tile_rectangle(gx_device *dev, register const gx_tile_bitmap *tile, int tx, int y, int tw, int th, gx_color_index color0, gx_color_index color1, int px, int py) { register uint invert; int sraster; uint tile_bits_size; const byte *base; const byte *end; int x, rw, w, h; register const byte *bptr; /* actually chunk * */ int dbit, wleft; uint mask; byte *dbase; declare_scan_ptr_as(dbptr, byte *); #define optr ((chunk *)dbptr) register int skew; if ( color0 != (color1 ^ 1) ) return gx_default_tile_rectangle(dev, tile, tx, y, tw, th, color0, color1, px, py); fit_fill(dev, tx, y, tw, th); invert = -(uint)((color0 ^ mdev->invert) & 1); sraster = tile->raster; base = tile->data + ((y + py) % tile->rep_height) * sraster; tile_bits_size = tile->size.y * sraster; end = tile->data + tile_bits_size; #undef end_y_loop #define end_y_loop(sdelta, ddelta)\ if ( --h == 0 ) break;\ if ( end - bptr <= sdelta ) /* wrap around */\ bptr -= tile_bits_size;\ bptr += sdelta; dbptr += ddelta draster = mdev->raster; dbase = scan_line_base(mdev, y); x = tx; rw = tw; /* * The outermost loop here works horizontally, one iteration per * copy of the tile. Note that all iterations except the first * have sourcex = 0. */ { int sourcex = (x + px) % tile->rep_width; w = tile->size.x - sourcex; bptr = base + ((sourcex & ~chunk_align_bit_mask) >> 3); dbit = x & chunk_align_bit_mask; skew = dbit - (sourcex & chunk_align_bit_mask); } outer: if ( w > rw ) w = rw; h = th; dbptr = dbase + ((x >> 3) & -chunk_align_bytes); if ( (wleft = w + dbit - chunk_bits) <= 0 ) { /* The entire operation fits in one (destination) chunk. */ set_mono_thin_mask(mask, w, dbit); #define write1_loop(src)\ for ( ; ; )\ { write_store_masked(src, mask, 0);\ end_y_loop(sraster, draster);\ } if ( skew >= 0 ) /* single -> single, right/no shift */ { if ( skew == 0 ) /* no shift */ { write1_loop(cfetch_aligned(bptr)); } else /* right shift */ { int cskew = chunk_bits - skew; write1_loop(cfetch_right(bptr, skew, cskew)); } } else if ( wleft <= skew ) /* single -> single, left shift */ { int cskew = chunk_bits + skew; skew = -skew; write1_loop(cfetch_left(bptr, skew, cskew)); } else /* double -> single */ { int cskew = -skew; skew += chunk_bits; write1_loop(cfetch2(bptr, cskew, skew)); } #undef write1_loop } else if ( wleft <= skew ) { /* 1 source chunk -> 2 destination chunks. */ /* This is an important special case for */ /* both characters and halftone tiles. */ uint rmask; int cskew = chunk_bits - skew; set_mono_left_mask(mask, dbit); set_mono_right_mask(rmask, wleft); #if arch_is_big_endian /* no byte swapping */ #undef cinvert #define cinvert(bits) (bits) /* pre-inverted here */ for ( ; ; ) { register uint bits = cfetch_aligned(bptr) ^ invert; write_store_masked(bits >> skew, mask, 0); write_store_masked(bits << cskew, rmask, 1); end_y_loop(sraster, draster); } #undef cinvert #define cinvert(bits) ((bits) ^ invert) #else /* byte swapping */ for ( ; ; ) { write_store_masked(cfetch_right(bptr, skew, cskew), mask, 0); write_store_masked(cfetch_left(bptr, cskew, skew), rmask, 1); end_y_loop(sraster, draster); } #endif } else { /* More than one source chunk and more than one */ /* destination chunk are involved. */ uint rmask; int words = (wleft & ~chunk_bit_mask) >> 3; uint sskip = sraster - words; uint dskip = draster - words; register uint bits; #define next_x_chunk\ bptr += chunk_bytes; dbptr += chunk_bytes set_mono_left_mask(mask, dbit); set_mono_right_mask(rmask, wleft & chunk_bit_mask); if ( skew == 0 ) /* optimize the aligned case */ { for ( ; ; ) { int count = wleft; /* Do first partial chunk. */ write_store_masked(cfetch_aligned(bptr), mask, 0); /* Do full chunks. */ while ( (count -= chunk_bits) >= 0 ) { next_x_chunk; write_store(cfetch_aligned(bptr)); } /* Do last chunk */ if ( count > -chunk_bits ) { write_store_masked(cfetch_aligned(bptr + chunk_bytes), rmask, 1); } end_y_loop(sskip, dskip); } } else /* not aligned */ { bool case_right = (skew >= 0 ? true : ((bptr += chunk_bytes), false)); int cskew = -skew & chunk_bit_mask; skew &= chunk_bit_mask; for ( ; ; ) { int count = wleft; if ( case_right ) bits = cfetch_right(bptr, skew, cskew); else bits = cfetch2(bptr - chunk_bytes, cskew, skew); write_store_masked(bits, mask, 0); /* Do full chunks. */ while ( count >= chunk_bits ) { bits = cfetch2(bptr, cskew, skew); next_x_chunk; write_store(bits); count -= chunk_bits; } /* Do last chunk */ if ( count > 0 ) { bits = cfetch_left(bptr, cskew, skew); if ( count > skew ) bits += cfetch_right(bptr + chunk_bytes, skew, cskew); write_store_masked(bits, rmask, 1); } end_y_loop(sskip, dskip); } } } #undef end_y_loop #undef next_x_chunk #undef optr if ( (rw -= w) > 0 ) { x += w; w = tile->size.x; bptr = base; skew = dbit = x & chunk_align_bit_mask; goto outer; } return 0; } #endif /**************** ****************/