#include "u.h" #include "../port/lib.h" #include "mem.h" #include "dat.h" #include "fns.h" #include "../port/error.h" #include "devtab.h" #include "io.h" typedef struct Rtc Rtc; typedef struct Nvram Nvram; /* * length of nvram is 2048 * the last addresses are reserved by convention for * a checksum and setting the real time clock */ enum{ NVLEN = 2046, NVCKSUM = 2046, NVRTC = 2047, Nbcd = 8, /* number of bcd bytes in the clock */ Qrtc = 1, Qnvram, }; struct Nvram{ uchar val; uchar pad[7]; }; struct Rtc { int sec; int min; int hour; int mday; int mon; int year; }; QLock rtclock; /* mutex on nvram operations */ static Dirtab rtcdir[]={ "rtc", {Qrtc, 0}, 0, 0644, "nvram", {Qnvram, 0}, 0, 0600, }; #define NRTC (sizeof(rtcdir)/sizeof(rtcdir[0])) static uchar pattern[] = { 0xc5, 0x3a, 0xa3, 0x5c, 0xc5, 0x3a, 0xa3, 0x5c }; ulong rtc2sec(Rtc*); void sec2rtc(ulong, Rtc*); int *yrsize(int); void setrtc(Rtc*); long rtctime(void); void nvcksum(void); void rtcreset(void) { } void rtcinit(void) { } Chan* rtcattach(char *spec) { return devattach('r', spec); } Chan* rtcclone(Chan *c, Chan *nc) { return devclone(c, nc); } int rtcwalk(Chan *c, char *name) { return devwalk(c, name, rtcdir, NRTC, devgen); } void rtcstat(Chan *c, char *dp) { devstat(c, dp, rtcdir, NRTC, devgen); } Chan* rtcopen(Chan *c, int omode) { omode = openmode(omode); switch(c->qid.path){ case Qrtc: if(strcmp(u->p->user, eve)!=0 && omode!=OREAD) error(Eperm); break; case Qnvram: if(strcmp(u->p->user, eve)!=0 || !cpuserver) error(Eperm); } return devopen(c, omode, rtcdir, NRTC, devgen); } void rtccreate(Chan *c, char *name, int omode, ulong perm) { USED(c); USED(name); USED(omode); USED(perm); error(Eperm); } void rtcclose(Chan *c) { USED(c); } long rtcread(Chan *c, void *buf, long n, ulong offset) { Nvram *nv; char *p; ulong t, ot; int i; if(c->qid.path & CHDIR) return devdirread(c, buf, n, rtcdir, NRTC, devgen); switch(c->qid.path){ case Qrtc: qlock(&rtclock); t = rtctime(); do{ ot = t; t = rtctime(); /* make sure there's no skew */ }while(t != ot); qunlock(&rtclock); n = readnum(offset, buf, n, t, 12); return n; case Qnvram: if(offset > NVLEN) return 0; if(n > NVLEN - offset) n = NVLEN - offset; nv = (Nvram *)NVRAM; p = buf; qlock(&rtclock); for(i = 0; i < n; i++) p[i] = nv[i+offset].val; qunlock(&rtclock); return n; } error(Egreg); return -1; /* never reached */ } long rtcwrite(Chan *c, void *buf, long n, ulong offset) { Nvram *nv; Rtc rtc; ulong secs; char *cp, *ep; int i; switch(c->qid.path){ case Qrtc: if(offset!=0) error(Ebadarg); /* * read the time */ cp = ep = buf; ep += n; while(cp < ep){ if(*cp>='0' && *cp<='9') break; cp++; } secs = strtoul(cp, 0, 0); /* * convert to bcd */ sec2rtc(secs, &rtc); /* * write it */ qlock(&rtclock); setrtc(&rtc); qunlock(&rtclock); return n; case Qnvram: if(offset > NVLEN) return 0; if(n > NVLEN - offset) n = NVLEN - offset; nv = (Nvram *)NVRAM; qlock(&rtclock); for(i = 0; i < n; i++) nv[i+offset].val = ((char*)buf)[i]; nvcksum(); qunlock(&rtclock); return n; } error(Egreg); return -1; /* never reached */ } void rtcremove(Chan *c) { USED(c); error(Eperm); } void rtcwstat(Chan *c, char *dp) { USED(c); USED(dp); error(Eperm); } void nvcksum(void) { Nvram *nv; uchar cksum; int i; /* * Seed the checksum so all-zeroes (all-ones) nvram doesn't have a zero * (all-ones) checksum. */ cksum = 0xa5; nv = (Nvram *)NVRAM; for(i = 0; i < NVLEN; i++){ cksum ^= nv[i].val; cksum = (cksum << 1) | ((cksum >> 7) & 1); } nv[NVCKSUM].val = cksum; } /* * issue pattern recognition bits to nv ram to address the * real time clock */ void rtcpattern(void) { uchar *nv; uchar ch; int i, j; nv = &((Nvram*)NVRAM)[NVRTC].val; /* * read the pattern sequence pointer to reset it */ ch = *nv; USED(ch); /* * stuff the pattern recognition codes one bit at * a time into *nv. */ for(i = 0; i < Nbcd; i++){ ch = pattern[i]; for (j = 0; j < 8; j++){ *nv = ch & 0x1; ch >>= 1; } } } #define GETBCD(o) ((bcdclock[o]&0xf) + 10*(bcdclock[o]>>4)) long rtctime(void) { int i,j; uchar ch; uchar *nv; uchar bcdclock[Nbcd]; Rtc rtc; nv = &((Nvram*)NVRAM)[NVRTC].val; /* * set up the pattern for the clock */ rtcpattern(); /* * read out the clock one bit at a time */ for(i = 0; i < Nbcd; i++){ ch = 0; for (j = 0; j < 8; j++) ch |= ((*nv & 0x1) << j); bcdclock[i] = ch; } /* * see if the clock oscillator is on */ if(bcdclock[4] & 0x20) return 0; /* nope, time is bogus */ /* * convert from BCD */ rtc.sec = GETBCD(1); rtc.min = GETBCD(2); rtc.hour = GETBCD(3); rtc.mday = GETBCD(5); rtc.mon = GETBCD(6); rtc.year = GETBCD(7); /* * the world starts jan 1 1970 */ if(rtc.year < 70) rtc.year += 2000; else rtc.year += 1900; return rtc2sec(&rtc); } #define PUTBCD(n,o) bcdclock[o] = (n % 10) | (((n / 10) % 10)<<4) void setrtc(Rtc *rtc) { int i, j; uchar ch; uchar bcdclock[Nbcd]; uchar *nv; bcdclock[0] = bcdclock[4] = 0; PUTBCD(rtc->sec, 1); PUTBCD(rtc->min, 2); PUTBCD(rtc->hour, 3); PUTBCD(rtc->mday, 5); PUTBCD(rtc->mon, 6); PUTBCD(rtc->year, 7); /* * set up the pattern for the clock */ rtcpattern(); /* * write the clock one bit at a time */ nv = &((Nvram*)NVRAM)[NVRTC].val; for(i = 0; i < Nbcd; i++){ ch = bcdclock[i]; for (j = 0; j < 8; j++){ *nv = ch & 1; ch >>= 1; } } } #define SEC2MIN 60L #define SEC2HOUR (60L*SEC2MIN) #define SEC2DAY (24L*SEC2HOUR) /* * days per month plus days/year */ static int dmsize[] = { 365, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static int ldmsize[] = { 366, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; /* * return the days/month for the given year */ int * yrsize(int yr) { if((yr % 4) == 0) return ldmsize; else return dmsize; } /* * compute seconds since Jan 1 1970 */ ulong rtc2sec(Rtc *rtc) { ulong secs; int i; int *d2m; secs = 0; /* * seconds per year */ for(i = 1970; i < rtc->year; i++){ d2m = yrsize(i); secs += d2m[0] * SEC2DAY; } /* * seconds per month */ d2m = yrsize(rtc->year); for(i = 1; i < rtc->mon; i++) secs += d2m[i] * SEC2DAY; secs += (rtc->mday-1) * SEC2DAY; secs += rtc->hour * SEC2HOUR; secs += rtc->min * SEC2MIN; secs += rtc->sec; return secs; } /* * compute rtc from seconds since Jan 1 1970 */ void sec2rtc(ulong secs, Rtc *rtc) { int d; long hms, day; int *d2m; /* * break initial number into days */ hms = secs % SEC2DAY; day = secs / SEC2DAY; if(hms < 0) { hms += SEC2DAY; day -= 1; } /* * generate hours:minutes:seconds */ rtc->sec = hms % 60; d = hms / 60; rtc->min = d % 60; d /= 60; rtc->hour = d; /* * year number */ if(day >= 0) for(d = 1970; day >= *yrsize(d); d++) day -= *yrsize(d); else for (d = 1970; day < 0; d--) day += *yrsize(d-1); rtc->year = d; /* * generate month */ d2m = yrsize(rtc->year); for(d = 1; day >= d2m[d]; d++) day -= d2m[d]; rtc->mday = day + 1; rtc->mon = d; return; }