
Inferno Ports: Hosted and Native

Vita Nuova
27 April 2005

Revised 22 January 2007

Inferno is a portable environment, encompassing operating system, languages, virtual machine and
the tools required to build it. This section briefly summarises the state of the ports and compilers included
in this release. Directory names are relative to the root of the Inferno release tree, unless otherwise specified
by the context.

All components are built using the program mk, based on ‘make’like recipes found in the mkfile in
each source directory throughout the Inferno tree. Mk is described by the manual page mk(10.1) in Volume
1; a more tutorial discussion, including a summary of differences with Unix make , can be found in Maintain
ing Files on Plan 9 with Mk by Hume and Flandera, reprinted in this volume. The source for mk itself is
included in utils/mk. It is included readymade in the full and sourceonly distributions, to make life eas
ier. It must be compiled manually only on the initial port to a new host environment; instructions for that
are given below.

1. The C compilers

An unusual property of the compiler suites used to compile native Inferno is that there is no differ
ence in configuration or content between a ‘compiler’ (compiling on the same system and processor type as
the target) and a ‘cross compiler’ (compiling on a host that differs from the target), even when the host oper
ating systems are quite different. Indeed, in their ancestral home, Plan 9, it is the default action to compile
instances of all compilers for all possible target architectures, as a matter of course.

The main difference between this suite and the original Plan 9 suite is that all Plan 9 C extensions
have been eliminated from the compiler’s own source, allowing it to be compiled on environments that
accurately support ANSI C and a few necessary Posix functions.

The source for the compilers is found in subdirectories of utils. The compilers are named as fol
lows:

0c MIPS compiler for 64bit littleendian R4000 MIPS (or ‘spim’)

1c 68000 compiler, usable with the Motorola Dragonball

2c 680x0 compiler for x >= 2

5c ARM compiler

6c AMD64

8c Intel x86 compiler, for x>2

kc Sun SPARC compiler

qc PowerPC compiler

vc MIPS R[234]000 in 32bit bigendian mode

The compilers share components, compiled into a library from source in the directory utils/cc. The cor
responding assemblers and linkers are found in similarly named directories: 2a and 2l are the assembler
and linker for use with 2c for instance. Note that this suite is unusual in that the compilers and assemblers
produce a binary assembly language that is finally converted to machine code by the linker. The assembler
is used only to write machinelanguage assist for the operating system, or a runtime routines using instruc
tions not accessible from C, and is not used by the compiler. See the paper ‘‘Plan 9 C compilers’’ by Ken
Thompson, reprinted in this volume.

With the exception of the 68000 compiler, all the compilers have been used extensively to compile
Inferno, and most have been used to compile Plan 9 and all its applications; and we have found them solid.
The 68000 compiler was used to attempt a port of Inferno to the Motorola Dragonball (in the Palm Pilot). It
is included here in case someone wishes to have another go. We have no experience with it.



 2 

The ARM compiler 5c supports the ARM (Strongarm, PXA) architecture; the related compiler tc
generates ARM’s Thumb instructions instead. The output of both can be linked together by the ARM loader
5l to achieve ARMThumb interworking. 5c has been used to generate code for the StrongARM SA110
and SA1100 processors (the primary targets for native Inferno for many years). The code generated was
greatly improved by Richard Miller. The floatingpoint support is adequate for C programs: the compiler
generates ARM floatingpoint instructions, as implemented on the ARM7500 but not on the Strongarm,
where they must be emulated.

The PowerPC compiler supports the 32bit PowerPC architecture only; it does not support either the
64bit extensions or the POWER compatibility instructions. It has been used for production operating sys
tem work on the 405EP, 603, 70x, 821, 823, and 860. On the embedded processors such as 405 and 8xx
floatingpoint instructions must be emulated. Instruction scheduling is not implemented; otherwise the
code generated is similar to that for the other loadstore architectures. The compiler makes little or no use
of unusual PowerPC features such as the counter register, several condition code registers, and multiply
accumulate instructions, but they are sometimes used by assembly language routines in the libraries. The
compiler does replace explicit comparisons by conditionsetting instructions. Its runtime conventions are
more efficient than those of the PowerPC ABI.

2. Applications

Dis object files are portable across all variants of Inferno, hosted and native. There need be only one
copy of the Dis files to serve many different versions of Inferno; they need not be rebuilt for each platform
and can be shared by different types of host. Limbo insulates the programmer from all details of the partic
ular processor, including byteordering, and consequently the applications themselves are portable.

The source for the applications is found in subdirectories of appl: appl/cmd holds the source for
most command line applications (that use no graphics); appl/wm contains the source for most applications
that run under wm(1); appl/svc contains the source for various system services and file servers;
appl/mux, the source for the interactive television demo mux(1); appl/charon, the source for the Charon
web browser; and appl/acme the source for Acme written in Limbo.

The mkfile in each directory can currently only be used by an instance of mk running outside the
Inferno environment, under the host operating system. This complicates its use with acme(1), normally
requiring the use of the os(1) command. In a few cases, there is a mashfile that can be used by mash
make(1) to build a Limbo application from within Inferno (native or hosted). A consistent approach to
building applications both inside and outside Inferno is being developed. In any case, the resulting Dis files
are portable once produced.

3. Hosted Inferno (emu)

There are currently four main variants of hosted Inferno: Plan 9, Unix (and clones), MacOS X and
Windows. The source is held in directory emu, with a subdirectory for each hosted platform: FreeBSD,
Irix, Linux, MacOSX, NetBSD, Nt (for all Windows platforms, including the Internet Explorer plugin),
Plan9, Solaris, and so on. Each platform directory has a mkfile and one or more configuration files of
the form described by config(6). An executable for a particular host type is built on that host type, using the
host’s own command interpreter, not under Inferno. Move to the emu subdirectory appropriate to that
host, ensure the command interpreter’s path variable includes the directory containing the Inferno bin
directory for that host (eg, /home/inferno/Solaris/sparc/bin), and run mk.

Like the native kernels emu relies on several auxiliary libraries (the source of which it often shares
with the native kernels). Emu itself is built by the mkfile in the emu subdirectory containing the
platformspecific source for the host platform. Each library has its own mkfile; the various components
are made in the right order by the mkfile at the root of the Inferno tree. The mkfile for each platform
will also invoke mk recursively to make the appropriate libraries for a given configuration.

The Unix emu variant generally is covered by ‘POSIX’ (with common extensions) but each Unix port
has one file that differs considerably for each port, namely emu/platform/os.c, the differences correspond
ing to the different ways under Unix of implementing kernelscheduled threads efficiently.

There are working emu versions for FreeBSD/386, Irix/mips, Linux/386, NetBSD/386, MacOSX/386,
MacOSX/power, Plan 9, Solaris/sparc, and Windows (NT, 2000 and Explorer plugin). Each platform typi
cally uses mechanisms specific to the host operating system to implement Inferno’s internal thread/process
structure. POSIX threads have often been found to be insufficient (poorly implemented) on some platforms,
and if so are avoided. See kproc in emu/*/os.c.



 3 

Source is included for ports to HP/UX (S800 architecture), Solaris/386, and Unixware, in case some
one wishes to take them up now, but we have not determined their fitness.

The Plan 9 hosted implementation is unusual in that it supports several processor types: 386, mips,
power (Power PC) and sparc. Furthermore, all versions of emu can be built on any processor type, in the
usual way for Plan 9.

Otherwise, as distributed, emu for a platform can only be built when running on that platform.

One unusual variant makes the whole of Inferno a plugin for Microsoft’s Internet Explorer, giving
the same environment for Inferno applications running in an HTML page as is provided by hosted or native
Inferno. That is, there is not a distinct ‘applet’ environment with special programming interfaces. The
source for the various plugin components is found in /tools/plugin and /usr/internet within the
Inferno tree; they use the version of emu defined by the configuration file /emu/Nt/ie.

All the libraries and executables can be built in a tree containing only the source code. To do that for
a supported variant of hosted Inferno, on Unix or Plan 9, do the following in the root of the Inferno tree:

1 Edit mkconfig to reflect your host environment, specifically ROOT (which must be an absolute path
name), SYSHOST and OBJTYPE. The comments in the file should help you choose.

2 Run makemk.sh to rebuild the mk command, which is used to build everything else.

3 Set PATH (or path on Plan 9) to include the bin directory for the platform, which will now contain
the mk binary just built. On Unix, export PATH.

4 Then mk nuke to remove any extraneous object files.

5 Finally, mk install to create and install the libraries, limbo compiler, emu for hosted Inferno, and
auxiliary commands. The rules do that in an order that ensures that the commands or libraries
needed by a later stage are built and installed first. (Note that a plain mk will not suffice, because it
does not put the results in the search path.)

Doing something similar on Windows or Plan 9 currently requires the executable for mk to be available in
the search path, since there is no equivalent of makemk.sh. Otherwise the procedure is the same. On Plan
9, of course, the host system’s normal version of mk should be adequate.

4. Native Inferno

As with the different versions of emu, once the native kernel is running, all applications work straight
away; the same applications are used in native and emulated mode, subject to suitable devices being avail
able. Because the portable compiler suite is used to compile native kernels, and those compilers are auto
matically crosscompilers, all native Inferno implementations can be built on any host platform. Further
more, the build procedures and resulting object files are the same.

Early ports in 1996 were made by Bell Labs to an internal device based on the AMD 29000, an early
ARMbased ‘network computer’, and Intelbased PCs. Between 1997 and 1999, Lucent concentrated mainly
on the Strongarm platform (SA1100), for various Digital/Intel development boards, and especially several
‘web phones’, including the Sword Webphone Reference Design. It also undertook ports to other devices
for experiment, or under contract.

Vita Nuova Limited also ported the system, both for its own purposes and under contract to Lucent.
Targets included a small 386based Internet device, a set top Internet box using the PowerPC 603e, a digital
television set top box with a Strongarm SA110 and a Teralogic TL750 graphics chip, the USR/3Com Edge
server (in a chassis containing various types of line card), various boards based on the PowerPC
823/821/860, many different configurations of IBM PC, and a Ziatech Pentiumbased VME crate.

Distribution of most previous and existing ports is restricted by the terms on which they were under
taken, or because they were ports of older Inferno releases and not kept up to date. We have included the
following as examples in this distribution.

The StrongARM kernel

The source for the StrongARM kernels is split across several directories. The directory os/sa1110
contains all code that is generally architecturespecific but platformindependent. Other directories contain
platformspecific code: os/cerf1110 for the Intrinsyc Cerfcube1110, and os/ipaq1110 for the Compaq
(as it then was) IPAQ H3650. Earlier Webphone ports are tied to hardware that is not generally obtainable
and the ports to those platforms included some software (notably modem software) that cannot generally
be distributed.



 4 

There is also a preliminary port to the ARMbased Intel XScale. The code common to PXA implemen
tations is in os/pxa. The initial platform was the Intrinsyc Cerfboard 250; its code is in os/cerf250. A
port to the Gumstix (see www.gumstix.com) is in progress.

The platform’s own bootstrap is used in all cases. On the IPAQ, the Linux bootloader from Compaq
(HP) Research must be loaded onto the device first, following instructions given at www.handhelds.org.
See the README file in each os source directory for details.

Other ARMbased processors to which Inferno has been ported include the ARM7 evaluator kit (see
os/ks32), although its memory is tight, and the TI925 including the TI OMAP. The latter two ports were
to proprietary TI925 implementations, and have not been included, but there is a body of code common to
all such platforms that could be made available if that were useful.

The PowerPC kernel

The directory os/fads contains the port of Inferno to the MPC8xx FADS development board. It has
been used with the MPC821, MPC823 and MPC860 processors. It uses code common to MPC8xx proces
sors, found in os/mpc. The interface to the CPM is provided by cpm.c. There are drivers for the real time
clock, flash devices (including a Flash Translation Layer driver), and communications controllers in Ether
net, UART, and IrDA mode (see etherscc.c and devuart.c). The IrDA has been used for Styx transport
between a FADS board and an IBM Thinkpad 560. The file screen.c drives an 8bit per pixel LCD (TFT)
display panel. A sample interface to the onchip video device of the MPC823 (only) as wired on the FADS
board using auxiliary chips can be found in devvid.c. The York Electronics Centre developed a touch
panel for us, connected using SPI; the driver is devtouch.c, and could be adapted for similar devices.

The bootstrap program for the FADS board is in os/boot/mpc, loosely derived from an older ver
sion of os/boot/pc. It is initially converted to S records that are loaded into flash by MPC8BUG from a
PC, and thereafter the images of the boot and kernel images can be updated using the flash devices pro
vided by the system itself, and the utility programs qconfig.b and qflash.b in appl/cmd/mpc.

Another port is to the Brightstar Engineering ipEngine containing an MPC823 and an Altera FPGA.
See os/ipengine. It uses common code from os/mpc. The device driver that loads the FPGA is in
devfpga.c; see fpga(3) for the interface and fpgaload(8) for a command to do it. See the README file for
information on loading the kernel into the flash.

The most recent PowerPC port is to the IBM 405EP, and more specifically to the Intrinsyc Cerfcube
405EP. The source for that port is in os/cerf405; lacking another 405EP platform for reference, the source
code has not yet been split into that common to all 405EP implementations and that specific to the Cerfcube,
although that would be easy to do.

The x86 kernel

The os/pc directory contains the components for ports to 386, 486 and Pentium class machines. The
main difficulty is device support: in particular only a limited set of Ethernet and graphics cards is sup
ported. We have used mainly the 3Com and Intel 82557 drivers. A ‘generic’ PC port is included that has a
graphics driver that should run on systems that provide a VESA BIOS mode.

We have a (slow) floatingpoint emulator for the 386 found in os/pc/fpi387.c; code to invoke it in
trap can be provided on request.

The source for the PC bootstrap program 9load is in os/boot/pc. It is simply a copy of the current
Plan 9 PC bootstrap program, with slight modifications to allow it to be compiled on many host systems.

The Javastation 1 kernel

The directory os/js has the first port to the Sun Javastation 1. It was done by Tad Hunt and Eric
Van Hensbergen in a matter of days to demonstrate Inferno at Java One in 1997. It boots over the net using
TFTP. Javastations being a bit thin on the ground now, it is unlikely to be directly usable unless you can
find one second hand (you might find a Javastation 2 coffee pot, but that is slightly different again). That is
a pity, because the machine was quite usable running Inferno and Limbo applications, often surprising
those used to the Javabased offering on the same platform. It is included as an example of a microSPARC
port. Beware that screen.c has not yet been converted for Fourth Edition graphics (partly because we no
longer have a suitable device for testing).



 5 

5. Supporting tools

The utils directory also contains ANSI C versions of other components of the Plan 9 development
suite, such as nm, ksize, ar, and of course the acid debugger. Most rely on libmach, a suite of functions
forming a library to handle the various object and executable files in one place.

Some other utilities give a portable way to express some of the kernel build scripts: sed, test, rm,
and mkdir. On Plan 9, mk and kernel build scripts use Plan 9’s own shell, rc . On Unix systems, they use sh .
On Windows, a version of Plan 9’s rc has been ported to reduce the number of variants to two, and keep the
system selfcontained; its source is in utils/rcsh and installs as rcsh.exe.


