
Limbo profilers in Inferno
J R Firth

Vita Nuova
13 June 2002

1. Introduction

Currently there are three application level profiling tools in the Inferno package. Prof is a time profiler
which, by sampling, can provide statistics on the percentage of time spent on each line of limbo source.
Cprof is a coverage profiler which provides the execution profile for limbo source code. It can accumulate
results over a series of runs to allow full coverage testing. Finally, mprof is a memory profiler which pro-
vides statistics on the amount of memory used by each line of limbo source.

Two gui versions of these tools currently exist. Wm/cprof shows the coverage per module and highlights
those lines which have not been executed or have been only partially executed. Wm/mprof shows the mem-
ory usage per module and highlights lines with high memory allocation in darker shades of red. Prof itself
does not have a gui equivalent as it was originally written to determine why acme was so slow when using
it’s global editing command. A gui for it was not a requirement at that stage.

All these tools use a common library module /module/profile.m and /appl/lib/profile.b that acts
as the direct interface with the kernel profiling device.

Note that none of these tools give kernel profile statistics. For that, the devmem driver should be used.

Although the use of these tools is very similar, there are a few differences when it comes to interactive test-
ing as the profilers were written to answer different questions. Thus prof tries to determine ’why is blah so
slow ?’, cprof tries to accumulate coverage records over time and mprof tries to give a series of memory
statistics at intervals during the execution of a program or series of programs.

2. Prof

The time profiler works by sampling. A kernel procedure sleeps for the given sample time and then notes
the particular dis instruction currently being executed before repeating the process. After many such sam-
ples, an accurate profile can be obtained.

At it’s simplest we can profile a particular command by giving the command to execute followed by any
arguments to the command eg

prof wm/polyhedra

profiles the polyhedra displayer. After letting the latter run for a reasonable amount of time, we exit and
then get the following statistics.

Module: Wmlib(/dis/lib/wmlib.dis)

34 0.06 str = load String String->PATH;

**** module sampling points 1 ****

- 2 -

Module: Bufio(/dis/lib/bufio.dis)

340 0.06 n := 0;
341 0.12 while(b.index < b.size){
342 0.99 (ch, i, nil) = sys->byte2char(b.buffer[0:b.size], b.index);

**** module sampling points 19 ****

Module: Polyfill(/dis/math/polyfill.dis)

37 10.80 for(i := 0; i < n; i++)
38 19.86 b0[i] = b1[i] =�;
57 0.06 p.y += y;
58 1.18 dst.line((left, y), (right, y), Endsquare, Endsquare, 0, src, p);
63 0.12 prevx := �;
64 9.93 for(x := left; x <= right; x++){
65 20.61 if(z+e < zbuf0[k]  (z-e<= zbuf1[k] && x != right && prevx !=�)){
66 6.46 zbuf0[k] = z-e;
67 5.71 zbuf1[k] = z+e;
68 0.74 if(prevx == �)
69 0.74 prevx = x;
71 0.12 else if(prevx !=�){
72 0.25 fillline(dst, prevx, x-1,y, src, p);
73 2.61 prevx =�;
75 4.35 z += dx;
76 3.17 k++;
78 0.06 if(prevx !=�)
79 0.87 fillline(dst, prevx, right, y, src, p);
80 0.06 }
152 0.06 return (vx/z, mod);
186 0.06 sp.dzrem = mod(sp.num, sp.den) << fixshift;
187 0.06 sp.dz += sdiv(sp.dzrem, sp.den);
217 0.62 for(q = p = 0; p < ep; p++) {
218 0.37 sp = seg[p];
220 0.12 continue;
221 0.12 sp.z += sp.dz;
222 0.19 sp.zerr += sp.dzrem;
223 0.12 if(sp.zerr >= sp.den) {
224 0.19 sp.z++;
225 0.25 sp.zerr -=sp.den;
226 0.25 if(sp.zerr < 0  sp.zerr >= sp.den)
227 0.25 sys->print("bad ratzerr1: %d den %d dzrem %d0, sp.zerr, sp.den, sp.dzrem);
229 0.31 seg[q] = sp;
230 0.31 q++;
233 0.25 for(p = next; seg[p] != nil; p++) {
234 0.06 sp = seg[p];
247 0.12 ep = q;
248 0.06 next = p;
257 0.06 continue;
260 0.62 zsort(seg, ep);
262 0.25 for(p = 0; p < ep; p++) {
263 0.19 sp = seg[p];
264 0.06 cnt = 0;
265 0.06 x = sp.z;
266 0.25 ix = (x + onehalf) >> fixshift;
267 0.06 if(ix >= maxx)
271 0.06 cnt += sp.d;

- 3 -

272 0.12 p++;
273 0.25 sp = seg[p];
275 0.06 if(p == ep) {
277 0.06 return;
279 0.06 cnt += sp.d;
280 0.12 if((cnt&wind) == 0)
283 0.19 sp = seg[p];
286 0.25 ix2 = (x2 + onehalf) >> fixshift;
291 1.92 filllinez(dst, ix, ix2, iy, zv+ix*dx, er, dx, k+ix-zr.min.x,zbuf0, zbuf1, src, spt);
293 0.06 y += (1<<fixshift);
294 0.31 iy++;
295 0.06 k += xlen;
296 0.06 zv += dy;
298 0.06 }
310 0.06 done = 1;
311 0.12 q--;
312 0.25 for(p = 0; p < q; p++) {
313 0.87 if(seg[p].z > seg[p+1].z) {
367 0.06 t = a[0]; a[0] = a[i]; a[i] = t;
373 0.06 while(i < n && ycompare(a[i], a[0]) < 0);
379 0.12 t = a[i]; a[i] = a[j]; a[j] = t;
384 0.06 qsortycompare(a, j);

**** module sampling points 1584 ****

Module: Polyhedra(/dis/wm/polyhedra.dis)

327 0.12 return (int (geo.sx*v.x)+geo.tx, int (geo.sy*v.y)+geo.ty);
471 0.06 if(allf  dot(geo.view, newn[j]) < 0.0)
472 0.06 polyfilla(fv[j], new, newn[j], dot(geo.light, newn[j]), geo, concave, inc);
496 0.06 ap[j] = map(vtx, geo);
512 0.06 if(a <= -LIMIT a >= LIMIT)
531 0.06 fillpoly(RDisp, ap, ˜0, face, (0, 0), geo.zstate, dc, dx, dy);

**** module sampling points 7 ****

**** total sampling points 1611 ****

The output lists all lines in all modules with a sampling point. Each line shows the line number in the corre-
sponding source file, the percentage of time spent on that line and the source code. We can see that about
60% of the sampling points occur on lines 37, 38, 64 and 65 of the Polyfill module. With this information we
might then try to speed up this part of the code by altering the algorithm or making the limbo code more
efficient (for instance by moving constant calculations or addressing out of loops).

The number of sampling points is also shown. The sampling rate can be increased with the -soption to give
better granularity. This will cause a decrease in apparent performance but increases the accuracy of the
results. The above example showed the results for all modules sampled. We might have restricted attention
to the two main polyhedra modules instead by executing

prof -mPolyhedra -mPolyfill wm/polyhedra

See the manual page for other options to prof and further examples.

3. Cprof

Coverage of instructions is achieved by running a special dis instruction execute routine in place of the
usual one (just as the debugger does). This routine notes down each instruction as it is executed. The profile
device then passes this information to cprof via the io system.

- 4 -

The coverage profiler is used in a similar way to the time profiler.

cprof -mZeros zeros 1024 2880

gives

Module: Zeros(zeros.dis) 56% coverage

1 implement Zeros;
2
3 include "sys.m";
4 sys: Sys;
5 include "arg.m";
6 arg: Arg;
7 include "string.m";
8 str: String;
9 include "keyring.m";
10 include "security.m";
11 random: Random;
12
13 include "draw.m";
14
15 Zeros: module
16 {
17 init: fn(nil: ref Draw->Context, argv: list of string);
18 };
19
20 init(nil: ref Draw->Context, argv: list of string)
21 {
22 z: array of byte;
23 i: int;
24 + sys = load Sys Sys->PATH;
25 + arg = load Arg Arg->PATH;
26 + str = load String String->PATH;
27
28 + if(sys == nil  arg == nil)
29 - return;
30
31 + bs := 0;
32 + n := 0;
33 + val := 0;
34 + rflag := 0;
35 + arg->init(argv);
36 + while ((c := arg->opt()) != 0)
37 - case c {
38 - ’r’ => rflag = 1;
39 - ’v’ => (val, nil) = str->toint(arg->arg(), 16);
40 - * => sys->raise(sys->sprint("fail: unknown option (%c)0, c));
41 }

- 5 -

42 + argv = arg->argv();
43 + if(len argv >= 1)
44 + bs = int hd argv;
45 else
46 - bs = 1;
47 + if (len argv >= 2)
48 + n = int hd tl argv;
49 else
50 - n = 1;
51 + if(bs == 0  n == 0) {
52 - sys->fprint(sys->fildes(2), "usage: zeros [-r][-vvalue] blocksize [number]0);
53 - sys->raise("fail: usage");
54 }
55 + if (rflag) {
56 - random = load Random Random->PATH;
57 - if (random == nil)
58 - sys->raise("fail: no security module0);
59 - z = random->randombuf(random->NotQuiteRandom, bs);
60 }
61 else {
62 + z = array[bs] of byte;
63 + for(i=0;i<bs;i++)
64 + z[i] = byte val;
65 }
66 + for(i=0;i<n;i++)
67 + sys->write(sys->fildes(1), z, bs);
68 + }

**** module dis instructions 39725 ****

Here the -moption has restricted attention to the Zeros module itself. The output shows the source line
number, an indicator of coverage and the source. The indicator is + if the line has been executed, -if it hasn’t
and ? if only part of it has (for instance a loop statement that has never had it’s iteration part executed).
Lines with no indicator have no corresponding dis instructions associated with them. Another option (-f)
shows coverage frequencies instead.

An alternative to cprof is wm/cprof which shows the statistics graphically. It’s options are pretty much the
same as those to cprof . Unexecuted and partially executed lines of code are shown in colour. See the man
page for exact details of the colouring convention

Results may be accumulated with the -roption so that multiple runs of code can be made. The resulting
statistics go into a file <xxx>.prf when <xxx>.dis is the corresponding dis file. See the manual page for fur-
ther details on how to use this option and then review the accumulated results.

4. Mprof

When memory profiling, the kernel profile device associates each heap allocation with a line of limbo source
and each heap deallocation with the line of limbo source that allocated it. In this way, current memory
usage and high-waterusage can be determined on a line by line basis.

Here it seems that memory usage at a particular point in the execution of a program is more appropriate
than the post-mortemapproach of prof and cprof , so an interactive example is described (though mprof can
be used non-interactivelyand prof interactively if so desired). See the manual pages for complete details and
further examples.

To do this we execute

mprof -b-mPolyhedra

which kicks off profiling and restricts attention to the Polyhedra module whenever it runs. The -bsimply
says begin profiling. Note that no command to execute is given to mprof at this stage. Then run the com-
mand

- 6 -

wm/polyhedra &

and interact with it. Now show memory statistics

mprof

This gives

Module: Polyhedra(/dis/wm/polyhedra.dis)

44 100 100 sys = load Sys Sys->PATH;
45 132 132 draw = load Draw Draw->PATH;
46 68 68 tk = load Tk Tk->PATH;
47 1788 1788 wmlib = load Wmlib Wmlib->PATH;
48 232 232 bufio = load Bufio Bufio->PATH;
49 68 68 math = load Math Math->PATH;
50 204 204 rand = load Rand Rand->PATH;
51 0 3504 daytime = load Daytime Daytime->PATH;
52 544 544 polyfill = load Polyfill Polyfill->PATH;
53 1824 1824 smenu = load Smenu Smenu->PATH;
86 36 36 cmdch := chan of string;
95 36 36 sync := chan of int;
96 36 36 chan¸ := chan of real;
103 68 68 shade = array[NSHADES] of ref Image;
116 36 36 yieldc := chan of int;
120 36 36 sm := array[2] of ref Scrollmenu;
378 68 176 s += " (" + string p.indx + ")";
403 36 36 vec := array[2] of array of Vector;
404 740 740 vec[0] = array[V] of Vector;
405 740 740 vec[1] = array[V] of Vector;
407 36 36 norm = array[2] of array of Vector;
408 612 612 norm[0] = array[F] of Vector;
409 612 612 norm[1] = array[F] of Vector;
492 68 68 ap := array[n+1] of Point;
609 164 164 geo := ref Geom;
610 36 36 TM := array[4] of array of real;
612 272 272 TM[i] = array[4] of real;
663 8000 8000 p := ref Polyhedron;
707 740 740 p.v = array[p.V] of Vector;
710 612 612 p.f = array[p.F] of Vector;
713 132 132 p.fv = array[p.F] of array of int;
716 164 164 p.vf = array[p.V] of array of int;
729 9504 9640 return s[0: len s -1];
750 3672 3672 a := array[n+2] of int;
768 0 136 return (n, s[i+1:]);
779 0 104 return (r, s[i+1:]);
802 0 68 s = s[1:];
806 0 72 s = s[0: ln-1];

866 0 200 cmd(mainwin, ".f1.txt configure -text{" + s + "}");
874 0 356 labs := array[n] of string;
881 0 5128 labs[i++] = string q.indx + " " + name;
884 0 68 cmd(top, mname + " configure -borderwidth3");
920 0 104 cmd(win, ". configure -height" + string (scrsize.y -bd * 2));
934 0 244 cmd(win, ". configure -x" + string actr.min.x + " -y" + string actr.min.y);

Module totals 31416 33984

- 7 -

We get the source line number, the amount of memory in bytes currently allocated on that line, the high-
water mark in bytes and then the source. Thus loading the Sys module on line 44 used 100 bytes and this
memory is still allocated. Loading Daytime on line 51 used 3504 bytes but this is now released (because the
module pointer is set to nil in the source and the memory has been reclaimed). The string concatenation on
line 378 currently uses 68 bytes but at it’s worst it was 176 bytes.

Further interaction with wm/polyhedra can now be done and memory statistics reviewed before the profil-
ing session is ended, throwing away the accumulated memory statistics inside the kernel with

mprof -c

The -coption simply says cease profiling.

An alternative to mprof is wm/mprof which shows the statistics graphically. It’s options are pretty much the
same as those to mprof . Lines of code which have allocated more of the memory are shown in darker shades
of red.

5. Manual pages

Further information and other examples are given in the following manual pages :-

cprof(1)
mprof(1)
prof(1)
wm-cprof(1)
wm-mprof(1)

For the lower level library module interface to these profilers

prof(2)

For the kernel profile device which gathers timing, coverage and memory statistics

prof(3)

6. Sources

The relevant sources are

/module/profile.m
/appl/lib/profile.b
/appl/cmd/cprof.b
/appl/cmd/mprof.b
/appl/cmd/prof.b
/appl/wm/cprof.b
/appl/wm/mprof.b
/emu/devprof.c
/os/port/devprof.c

7. Addendum

A gui version of prof has been added for completeness. See the manual page wm-prof(1) and the source
/appl/wm/prof.b.

