/* Copyright (C) 1989, 1992, 1994, 1996 Aladdin Enterprises. All rights reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. For more information about licensing, please refer to http://www.ghostscript.com/licensing/. For information on commercial licensing, go to http://www.artifex.com/licensing/ or contact Artifex Software, Inc., 101 Lucas Valley Road #110, San Rafael, CA 94903, U.S.A., +1(415)492-9861. */ /* $Id: gdevsun.c,v 1.4 2002/02/21 22:24:52 giles Exp $*/ /* SunView driver */ #include "gx.h" /* for gx_bitmap; includes std.h */ #include #include #include #include #include "gscdefs.h" #include "gsmatrix.h" /* needed for gxdevice.h */ #include "gxdevice.h" #include "malloc_.h" #ifndef DEFAULT_DPI # define DEFAULT_DPI 75 /* Sun standard monitor */ #endif #ifdef A4 # define PAPER_X 8.27 /* A4 paper */ # define PAPER_Y 11.69 #endif #ifndef PAPER_X # define PAPER_X 8.5 /* US letter paper */ # define PAPER_Y 11 #endif /* Procedures */ dev_proc_open_device(sun_open); dev_proc_sync_output(sun_sync); dev_proc_close_device(sun_close); dev_proc_map_rgb_color(sun_map_rgb_color); dev_proc_map_color_rgb(sun_map_color_rgb); dev_proc_fill_rectangle(sun_fill_rectangle); dev_proc_copy_mono(sun_copy_mono); dev_proc_copy_color(sun_copy_color); dev_proc_draw_line(sun_draw_line); /* The device descriptor */ private gx_device_procs sun_procs = { sun_open, NULL, /* get_initial_matrix */ sun_sync, NULL, /* output_page */ sun_close, sun_map_rgb_color, sun_map_color_rgb, sun_fill_rectangle, NULL, /* tile_rectangle */ sun_copy_mono, sun_copy_color, sun_draw_line }; #define CMSNAME "GHOSTVIEW" /* SunView colormap name */ /* Define the SunView device */ typedef struct gx_device_sun { gx_device_common; Frame frame; Canvas canvas; Pixwin *pw; struct mpr_data mpr; Pixrect pr; int truecolor; /* use truecolor mapping */ int freecols; /* unallocated colors */ byte *red, *green, *blue; /* colormap */ char cmsname[sizeof(CMSNAME)+9];/* color map name */ #if !arch_is_big_endian /* need to swap bits & bytes */ # define BUF_WIDTH_BYTES (((int)(8.5*DEFAULT_DPI)+15)/16*2) byte swap_buf[BUF_WIDTH_BYTES]; #endif } gx_device_sun; #if !arch_is_big_endian /* Define a table for reversing bit order. */ static byte reverse_bits[256] = { 0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208, 48, 176, 112, 240, 8, 136, 72, 200, 40, 168, 104, 232, 24, 152, 88, 216, 56, 184, 120, 248, 4, 132, 68, 196, 36, 164, 100, 228, 20, 148, 84, 212, 52, 180, 116, 244, 12, 140, 76, 204, 44, 172, 108, 236, 28, 156, 92, 220, 60, 188, 124, 252, 2, 130, 66, 194, 34, 162, 98, 226, 18, 146, 82, 210, 50, 178, 114, 242, 10, 138, 74, 202, 42, 170, 106, 234, 26, 154, 90, 218, 58, 186, 122, 250, 6, 134, 70, 198, 38, 166, 102, 230, 22, 150, 86, 214, 54, 182, 118, 246, 14, 142, 78, 206, 46, 174, 110, 238, 30, 158, 94, 222, 62, 190, 126, 254, 1, 129, 65, 193, 33, 161, 97, 225, 17, 145, 81, 209, 49, 177, 113, 241, 9, 137, 73, 201, 41, 169, 105, 233, 25, 153, 89, 217, 57, 185, 121, 249, 5, 133, 69, 197, 37, 165, 101, 229, 21, 149, 85, 213, 53, 181, 117, 245, 13, 141, 77, 205, 45, 173, 109, 237, 29, 157, 93, 221, 61, 189, 125, 253, 3, 131, 67, 195, 35, 163, 99, 227, 19, 147, 83, 211, 51, 179, 115, 243, 11, 139, 75, 203, 43, 171, 107, 235, 27, 155, 91, 219, 59, 187, 123, 251, 7, 135, 71, 199, 39, 167, 103, 231, 23, 151, 87, 215, 55, 183, 119, 247, 15, 143, 79, 207, 47, 175, 111, 239, 31, 159, 95, 223, 63, 191, 127, 255 }; #endif /* The instance is public. */ gx_device_sun far_data gs_sunview_device = { std_device_std_body(gx_device_sun, &sun_procs, "sunview", (int)(PAPER_X*DEFAULT_DPI), (int)(PAPER_Y*DEFAULT_DPI), /* x and y extent */ DEFAULT_DPI, DEFAULT_DPI /* x and y density */ ), /* fill in color_info later from display depth */ { 0 }, /* std_procs */ 0, /* connection not initialized */ }; /* Macro for casting gx_device argument */ #define xdev ((gx_device_sun *)dev) /* * The macros below define the colormap configuration used on 8-bit * pseudo-color displays. */ /* * The following macros define the number of bits used to represent rgb colors. * The total must not exceed the display depth. * Note that the RGB dimensions could have an uneven number of bits assigned * to them, but that will cause dithering to not work very well, since * gs assumes the dither ramp is the same for all 3 color dimensions. * * Setting RED_BITS to n will pre-allocate a color-cube of 2^(3n) entries. * The remaining entries are allocated on demand for colors requested by * sun_map_rgb_color(), until the color map is full. At that point gs will * fall back onto dithering using the pre-allocated colors. * As a special case, if RED_BITS = GREEN_BITS = BLUE_BITS = 0, only * black and white are pre-allocated. */ #define RED_BITS 2 /* everything depends on this one */ #define GREEN_BITS RED_BITS #define BLUE_BITS RED_BITS #define DEPTH 8 /* don't change this */ #define RGB_BITS (RED_BITS + GREEN_BITS + BLUE_BITS) /* * Smallest # bits per dimension */ #define MAX_BITS RED_BITS #if (GREEN_BITS > MAX_BITS) #undef MAX_BITS #define MAX_BITS GREEN_BITS #endif #if (BLUE_BITS > MAX_BITS) #undef MAX_BITS #define MAX_BITS BLUE_BITS #endif /* * masks to pull out rgb components */ #define BLUE_MASK ((1 << BLUE_BITS) - 1) #define GREEN_MASK ((1 << (BLUE_BITS + GREEN_BITS)) - 1 - BLUE_MASK) #define RED_MASK ((1 << (BLUE_BITS + GREEN_BITS + RED_BITS)) - 1 \ - BLUE_MASK - GREEN_MASK) /* * number of colors on rgb dimensions */ #define RED_COLS (1 << RED_BITS) #define GREEN_COLS (1 << GREEN_BITS) #define BLUE_COLS (1 << BLUE_BITS) #define RGB_COLS (RED_COLS * GREEN_COLS * BLUE_COLS) #define MAX_COLS (1 << MAX_BITS) /* * maximum number of colors in map */ #define ALL_COLS (1 << DEPTH) /* 256 */ #define CMS_SIZE ALL_COLS /* cut down to 64 or 128 for more cooperative behaviour */ #if (RGB_COLS > CMS_SIZE) /* one is reserved for the scrollbar */ CMS_SIZE_too_small_for_color_cube #endif #if (RGB_BITS < 0) || (RGB_BITS > DEPTH) Display_does_not_support_this_many_colors #endif /* * The macros below define the color mapping used on 24-bit true-color * displays. * FAKE_TRUE_COLOR is used for debugging only. It simulates a true-color * type mapping on an 8-bit pseudo-color display. #define FAKE_TRUE_COLOR */ #ifdef FAKE_TRUE_COLOR # define TRUE_RED_BITS 3 /* everything depends on this one */ # define TRUE_GREEN_BITS 2 # define TRUE_BLUE_BITS (DEPTH - TRUE_RED_BITS - TRUE_GREEN_BITS) #else # define TRUE_RED_BITS 8 /* everything depends on this one */ # define TRUE_GREEN_BITS TRUE_RED_BITS # define TRUE_BLUE_BITS TRUE_RED_BITS #endif ./* FAKE_TRUE_COLOR */ #define TRUE_DEPTH (TRUE_RED_BITS + TRUE_GREEN_BITS + TRUE_BLUE_BITS) /* * Masks to pull out rgb components. Note that the bit order is BGR from * high to low order bits. */ #define TRUE_RED_MASK ((1 << TRUE_RED_BITS) - 1) #define TRUE_GREEN_MASK ((1 << (TRUE_RED_BITS + TRUE_GREEN_BITS)) - 1 \ - TRUE_RED_MASK) #define TRUE_BLUE_MASK ((1 << (TRUE_RED_BITS + TRUE_GREEN_BITS \ + TRUE_BLUE_BITS)) - 1 \ - TRUE_GREEN_MASK - TRUE_RED_MASK) /* * number of colors on rgb dimensions */ #define TRUE_RED_COLS (1 << TRUE_RED_BITS) #define TRUE_GREEN_COLS (1 << TRUE_GREEN_BITS) #define TRUE_BLUE_COLS (1 << TRUE_BLUE_BITS) /* Initialize the device. */ private Notify_value destroy_func(); int sun_open(register gx_device *dev) { #ifdef gs_DEBUG if ( gs_debug['X'] ) { extern int _Xdebug; _Xdebug = 1; } #endif if (xdev->frame == (Frame)0) xdev->frame = window_create(NULL, FRAME, FRAME_LABEL, gs_product, WIN_WIDTH, min(xdev->width + 24, 900), WIN_HEIGHT, min(xdev->height + 36, 900), WIN_Y, 0, WIN_X, 200, 0); if (xdev->frame == (Frame)0) return -1; xdev->canvas = window_create(xdev->frame, CANVAS, CANVAS_AUTO_EXPAND, FALSE, CANVAS_AUTO_SHRINK, FALSE, CANVAS_WIDTH, xdev->width, CANVAS_HEIGHT, xdev->height, #ifndef PRE_IBIS /* try to use 24-bit visual if OS supports it */ CANVAS_COLOR24, TRUE, #endif CANVAS_RETAINED, FALSE, 0); xdev->pw = canvas_pixwin(xdev->canvas); switch (xdev->pw->pw_pixrect->pr_depth) { static gx_device_color_info mono_ci = dci_black_and_white; /* * If the pre-allocated color cube leaves room for spare entries, * tell gs we can render colors exactly. Otherwise admit our * limitations. */ static gx_device_color_info color_ci = #if (RGB_COLS < CMS_SIZE) dci_color(DEPTH, 31, MAX_COLS); #else dci_color(DEPTH, MAX_COLS - 1, MAX_COLS); #endif static gx_device_color_info truecolor_ci = dci_color(TRUE_DEPTH,31,4); case 1: /* mono display */ xdev->color_info = mono_ci; break; #ifndef FAKE_TRUE_COLOR case DEPTH: /* pseudo-color display */ xdev->color_info = color_ci; xdev->truecolor = 0; break; #endif /* FAKE_TRUE_COLOR */ case TRUE_DEPTH: case TRUE_DEPTH+8: /* I'm not sure whether the XBGR frame buffer returns depth 24 or 32. */ /* pseudo-color display */ xdev->color_info = truecolor_ci; xdev->truecolor = 1; break; default: eprintf1("gs: Cannot handle display of depth %d.\n", xdev->pw->pw_pixrect->pr_depth); return -1; } if ( gx_device_has_color(xdev) #ifndef FAKE_TRUE_COLOR && !xdev->truecolor #endif ) { int j; int color; /* * Create the pre-allocated colorcube. */ xdev->red = (byte *)malloc(CMS_SIZE); xdev->green = (byte *)malloc(CMS_SIZE); xdev->blue = (byte *)malloc(CMS_SIZE); if (!xdev->red || !xdev->green || !xdev->blue) { eprintf("gs: no memory for colormap\n"); return -1; } #ifdef FAKE_TRUE_COLOR /* * Fit the largest possible color cube into the colormap. */ for ( j = 0; j < ALL_COLS; j++ ) { xdev->blue[j] = (double)((j & TRUE_BLUE_MASK) >> (TRUE_GREEN_BITS + TRUE_RED_BITS)) / (TRUE_BLUE_COLS - 1) * (ALL_COLS - 1); xdev->green[j] = (double)((j & TRUE_GREEN_MASK) >> TRUE_RED_BITS) / (TRUE_GREEN_COLS - 1) * (ALL_COLS - 1); xdev->red[j] = (double)((j & TRUE_RED_MASK)) / (TRUE_RED_COLS - 1) * (ALL_COLS - 1); } xdev->freecols = 0; #else /* !FAKE_TRUE_COLOR */ /* * Black and white are allocated in the last two slots, * so as to be compatible with the monochrome colormap. * This prevents most text etc. to go technicolor as focus * changes into the window. * * The requirement that these two entries be at the end * of the colormap makes it most convenient to allocate * the remmaining entries from back to the front as well. * Therefore xdev->freecols is the minimal allocated * color index, and decreases as new ones are allocated. */ j = CMS_SIZE - 2; cms_monochromeload(xdev->red + j, xdev->green + j, xdev->blue + j); /* * The remaining slots down to CMS_SIZE - RGB_COLS are filled * with evenly spaced points from the colorcube. */ for ( color = 1; color < RGB_COLS - 1; color++ ) { j--; xdev->red[j] = (double)((color & RED_MASK) >> (GREEN_BITS + BLUE_BITS)) / (RED_COLS - 1) * (ALL_COLS - 1); xdev->green[j] = (double)((color & GREEN_MASK) >> BLUE_BITS) / (GREEN_COLS - 1) * (ALL_COLS - 1); xdev->blue[j] = (double)((color & BLUE_MASK)) / (BLUE_COLS - 1) * (ALL_COLS - 1); } /* * Set the low-water mark to the beginning of the colorcube. */ xdev->freecols = j; /* * The unused entries are filled so that the last entry is * always different from the 0th entry. This is a requirement * for SunWindows. */ for (j-- ; j >= 0 ; j--) { xdev->red[j] = xdev->green[j] = xdev->blue[j] = ~xdev->red[CMS_SIZE - 1]; } #endif /* FAKE_TRUE_COLOR */ /* * Install the colormap. */ sprintf(xdev->cmsname, "%s-%d", CMSNAME, getpid()); pw_setcmsname(xdev->pw, xdev->cmsname); pw_putcolormap(xdev->pw, 0, CMS_SIZE, xdev->red, xdev->green, xdev->blue); } else { xdev->freecols = 0; xdev->red = (byte *)0; xdev->green = (byte *)0; xdev->blue = (byte *)0; } /* * Reset to retained after colormap length is changed */ window_set(xdev->canvas, CANVAS_RETAINED, TRUE, WIN_VERTICAL_SCROLLBAR, scrollbar_create(0), WIN_HORIZONTAL_SCROLLBAR, scrollbar_create(0), 0); window_set(xdev->frame, WIN_SHOW, TRUE, 0); /* Interpose a destroy function to keep the driver bookkeeping */ /* machinery from getting confused if the user closes the window. */ notify_interpose_destroy_func(xdev->frame, destroy_func); (void) notify_do_dispatch(); (void) notify_dispatch(); return 0; } /* Prevent the user from closing the window. */ private Notify_value destroy_func(Frame frame, Destroy_status status) { if ( status == DESTROY_CHECKING ) { notify_veto_destroy(frame); return (NOTIFY_DONE); } return (notify_next_destroy_func(frame, status)); } /* Close the device. */ int sun_close(gx_device *dev) { window_destroy(xdev->frame); xdev->frame = (Frame)0; xdev->canvas = (Canvas)0; xdev->pw = (Pixwin *)0; xdev->freecols = 0; if (xdev->red) free(xdev->red); if (xdev->green) free(xdev->green); if (xdev->blue) free(xdev->blue); return 0; } /* Synchronize the display with the commands already given */ int sun_sync(register gx_device *dev) { (void) notify_dispatch(); return 0; } /* Map RGB to color number - Look for existing entry in colormap, or create a new one, or give up if no free colormap entries (requesting dithering). */ gx_color_index sun_map_rgb_color(gx_device *dev, unsigned short red, unsigned short green, unsigned short blue) { if ( !xdev->frame || !gx_device_has_color(dev) ) /* * Invert default color index to match mono display * pixel values (black = 1, white = 0). */ return !gx_default_map_rgb_color(dev, red, green, blue); else if ( !xdev->truecolor ) { byte red_val, green_val, blue_val; int i; static int warn = 1; /* * Determine the RGB values at display resolution we * ideally would want this color to be mapped into. */ red_val = (double)red/gx_max_color_value * (ALL_COLS - 1); green_val = (double)green/gx_max_color_value * (ALL_COLS - 1); blue_val = (double)blue/gx_max_color_value * (ALL_COLS - 1); /* * Look for an exact match among the colors already allocated. * This includes the pre-allocated default color cube. */ for (i = CMS_SIZE - 1; i >= xdev->freecols; i--) { if (xdev->red[i] == red_val && xdev->green[i] == green_val && xdev->blue[i] == blue_val) { return i; } } /* * If we run out of space in the color map, let gs know. * It will call us again to request colors to do the * dithering, and hopefully request only RGB values that * match the colorcube entries. IF NOT, WE WILL LOOP * FOREVER! * NOTE: Leave the zero'th colormap entry alone lest the * scrollbar be colored. */ if (xdev->freecols <= 1) { if (warn) { eprintf("gs: last spare color map entry allocated\n"); warn = 0; } return gx_no_color_index; } /* * Allocate new color in map. */ xdev->red[i] = red_val; xdev->green[i] = green_val; xdev->blue[i] = blue_val; pw_setcmsname(xdev->pw, xdev->cmsname); pw_putcolormap(xdev->pw, i, 1, &xdev->red[i], &xdev->green[i], &xdev->blue[i]); xdev->freecols = i; return i; } else { /* true color mapping -- color index encodes all 3 RGB values */ return ((blue >> (gx_color_value_bits - TRUE_BLUE_BITS)) << (TRUE_GREEN_BITS + TRUE_RED_BITS)) | ((green >> (gx_color_value_bits - TRUE_GREEN_BITS)) << TRUE_RED_BITS) | (red >> (gx_color_value_bits - TRUE_RED_BITS)); } } /* Map color number back to RGB values - see sun_map_rgb_color(), above */ int sun_map_color_rgb(gx_device *dev, gx_color_index color, unsigned short rgb[3]) { if ( !xdev->frame || !gx_device_has_color(dev) ) return gx_default_map_color_rgb(dev, !color, rgb); else if ( !xdev->truecolor ) { /* * We just use the colormap to map back to rgb values. */ if (color < xdev->freecols || color >= CMS_SIZE) { eprintf1("gs: attempt to get RGB values for unallocated color index %d\n", (int)color); return -1; } rgb[0] = (double)xdev->red[color] / (ALL_COLS - 1) * gx_max_color_value; rgb[1] = (double)xdev->green[color] / (ALL_COLS - 1) * gx_max_color_value; rgb[2] = (double)xdev->blue[color] / (ALL_COLS - 1) * gx_max_color_value; return 0; } else { /* true color mapping */ rgb[0] = (double)((unsigned short)(color & TRUE_RED_MASK)) / (TRUE_RED_COLS - 1) * gx_max_color_value; rgb[1] = (double)((unsigned short)(color & TRUE_GREEN_MASK) >> TRUE_RED_BITS) / (TRUE_GREEN_COLS - 1) * gx_max_color_value; rgb[2] = (double)((unsigned short)(color & TRUE_BLUE_MASK) >> (TRUE_GREEN_BITS + TRUE_RED_BITS)) / (TRUE_BLUE_COLS - 1) * gx_max_color_value; return 0; } } /* Fill a rectangle with a color. */ int sun_fill_rectangle(register gx_device *dev, int x, int y, int w, int h, gx_color_index color) { fit_fill(dev, x, y, w, h); pw_write(xdev->pw, x, y, w, h, PIX_SRC | PIX_COLOR((int)(color)), (Pixrect *)0, 0, 0); (void) notify_dispatch(); return 0; } /* Copy a monochrome bitmap. */ int sun_copy_mono(register gx_device *dev, const byte *base, int sourcex, int raster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { /* We define a non-const pointer to the data so we can invert it or */ /* byte-swap it in place temporarily (we restore it at the end). */ /* Yes, this is a bad and wicked thing to do! */ #define non_const_base ((byte *)base) register int i; int nbytes; extern struct pixrectops mem_ops; #if !arch_is_big_endian /* need to swap bits & bytes */ # define BUF_WIDTH_BYTES (((int)(8.5*DEFAULT_DPI)+15)/16*2) byte swap_buf[BUF_WIDTH_BYTES]; #endif fit_copy(dev, base, sourcex, raster, id, x, y, w, h); nbytes = h * raster; xdev->pr.pr_ops = &mem_ops; xdev->pr.pr_width = w + sourcex + 8; xdev->pr.pr_height = h; xdev->pr.pr_depth = 1; xdev->pr.pr_data = (caddr_t)&(xdev->mpr); xdev->mpr.md_linebytes = raster; xdev->mpr.md_image = (short *)((ulong)base & ~1); #if !arch_is_big_endian /* Reverse the bit order in each byte. */ for ( i = 0; i < nbytes; i++ ) non_const_base[i] = reverse_bits[base[i]]; #endif pw_batch_on(xdev->pw); if (one != gx_no_color_index) { pw_stencil(xdev->pw, x, y, w, h, PIX_SRC | PIX_COLOR(one), &(xdev->pr), ((int)base & 1) ? sourcex + 8 : sourcex, 0, (Pixrect *)0, 0, 0); } if (zero != gx_no_color_index) { for (i = 0; i < nbytes; i++) non_const_base[i] = ~base[i]; pw_stencil(xdev->pw, x, y, w, h, PIX_SRC | PIX_COLOR(zero), &(xdev->pr), ((int)base & 1) ? sourcex + 8 : sourcex, 0, (Pixrect *)0, 0, 0); for (i = 0; i < nbytes; i++) non_const_base[i] = ~base[i]; } pw_batch_off(xdev->pw); #if !arch_is_big_endian /* Reverse the bits back again. */ for ( i = 0; i < nbytes; i++ ) non_const_base[i] = reverse_bits[base[i]]; #endif (void) notify_dispatch(); return 0; } /* Copy a color bitmap. */ int sun_copy_color(register gx_device *dev, const byte *base, int sourcex, int raster, gx_bitmap_id id, int x, int y, int w, int h) { extern struct pixrectops mem_ops; if ( !gx_device_has_color(dev) ) return sun_copy_mono(dev, base, sourcex, raster, id, x, y, w, h, (gx_color_index)0, (gx_color_index)1); fit_copy(dev, base, sourcex, raster, id, x, y, w, h); xdev->pr.pr_ops = &mem_ops; xdev->pr.pr_width = w + sourcex + 8; xdev->pr.pr_height = h; xdev->pr.pr_depth = 8; xdev->pr.pr_data = (caddr_t)&(xdev->mpr); xdev->mpr.md_linebytes = raster; xdev->mpr.md_image = (short *)((ulong)base & ~1); pw_write(xdev->pw, x, y, w, h, PIX_SRC, &(xdev->pr), (((int)base & 1) ? sourcex + 8 : sourcex), 0); (void) notify_dispatch(); return 0; } /* Draw a line */ int sun_draw_line(register gx_device *dev, int x0, int y0, int x1, int y1, gx_color_index color) { pw_vector(xdev->pw, x0, y0, x1, y1, PIX_SRC, color); (void) notify_dispatch(); return 0; }